UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE \& ENGINEERING
DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING
MAIN EXAMINATION
DECEMBER 2017

TITLE OF PAPER: BASIC ELECTRICAL ENGINEERING

COURSE CODE: EE251/EEE251

DURATION: 3 HOURS

INSTRUCTIONS:

1. There are five (5) questions in this paper. Answer question 1 and any other three (3) questions.
2. Each question carries equal marks.
3. Start each question in a new page.

This paper should not be opened until permission has been given by the invigilator.
This paper contains six (6) pages including this page.

Question 1 [25 Marks]

a. A graph of a car battery rated at 70 Ah and current drain of 5 A is shown in Figure Q.1a.
i. How long will the battery supply 20A of current?
[3 Marks]
ii. If the rating of the battery is not allowed to go below 64 Ah , for how long can the battery supply the rated current?

Figure Q.1a
b. The minimum current required for the operation of a relay coil is 500 mA at 120 V , if the current taken by the coil at $20^{\circ} \mathrm{C}$ is 530 mA (at 120 V) and the temperature coefficient of the resistor material is $0.00427^{\circ} \mathrm{C}^{-1}$ at 00 C , calculate the maximum temperature above which the relay will fail to operate
[6 Marks]
c. A wire of uniform cross section has a resistance of 0.8Ω. If the length of the wire is doubled and its cross sectional area increased 4 times, what is the resistance? (Ignore the effect of temperature).
[3 Marks]
d. Normally, heat energy is measured in joules (J). Given that you are required to design a heating element to boil a certain amount of water in 2 minutes using 200 kilojoules of energy. If the heating element is to operate at 240 V , calculate its current and power rating.
[4 Marks]
e. What is the total cost of using the following appliances at 1 Lilangeni 34 cents per kilowatt-hour?
i. 100 W home theatre system for 2 hours.
[1 Mark]
ii. $\quad 150 \mathrm{~W}$ LCD TV for 3 hrs 20 minutes
[1 Mark]
iii. $\quad 1500 \mathrm{~W}$ electric heater for 30 minutes
[1 Mark]
f. Determine the ratio of powers dissipated in two resistors, each having the same length and each made of copper wire of circular cross section, but one having a diameter twice that of the other, and each being connected across the same voltage.
[3 Marks]

Question 2 [25 Marks]

a. Reduce the resistor network between terminals a and b of Figure $Q .2 a$ to a single resistor.
[3 Marks]

Figure Q.2a
b. In Figure Q.2a, use wye-delta or delta-wye transformation to evaluate the following; i. The current supplied by the source, i.e. I_{s}.
ii. The voltage across R_{4}.
[6 Marks]
[2 Marks]

Figure Q.2a.
c. In Figure Q.2b, use the mesh current analysis technique to find;
i. The loop and branch currents.
[10 Marks]
ii. The power supplied by the 100 V and 50 V sources.
[4 Marks]

Figure Q.2b.

Question 3 [25 Marks]

a. Find the maximum power transferred to R in the circuit of Figure Q.3a.
[10 Marks]

Figure Q.3a.
b. Use transformations and nodal analysis to find current I_{1} and I_{2} in the circuit shown in Figure Q.3b.
[10 Marks]

Figure Q.3b.
c. Consider the circuit of Figure Q.3c to answer the following.

Figure Q.3c
i. Determine the time it takes for the capacitor to fully charge. [1 Mark]
ii. Give the mathematical expression for v_{c} and i_{c} when the switch is at position 1 .
iii. Sketch the transients for v_{c} and i_{c} when the capacitor is charging.

Question 4 [25 Marks]

a. Given the circuit of figure Q.4a,
i. Find the displacement current "through" each capacitor at time $(t=0)$.
ii. Find the voltage across each capacitor under steady state conditions (i.e. the capacitors have been charging for a long time).

Figure Q.4a.
b. Given the circuit of figure Q. 4 b ,
i. Find the expression of i_{0} when the inductor is discharging. Assume it has been charging for a long time.
ii. Sketch the waveform of i_{0}.

Figure Q.4b.

Question 5 [25 Marks]

a. Given the circuit shown in Figure Q.5a, answer the following:
i. Use mesh analysis to determine current I_{1} and I_{2}

Figure Q.5a

ii. Find the power supplied (or absorbed) by each source of the circuit.
[4 Marks]
b. An impedance $Z_{1}=(4+j 4) \Omega$ is connected in parallel with an impedance $Z_{2}=(12$ $+j 6) \Omega$. If the input reactive power is 2500 VAR (lagging), what is the total active power?

End of Paper

