UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE \& ENGINEERING DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGNEERING RESIT EXAMINATION

JULY 2018

TITLE OF PAPER: BASIC ELECTRICAL ENGINEERING

COURSECODE: EEE251

DURATION: 3 HOCRS

INSTRUCTIONS:

1. There are five (6) questions in this paper. Answer question 1 and any other three (3) questions.
2. Each question carries equal marks.
3. Start each question in a new page.

This paper should not be opened until permission has been given by the invigilator.
This paper contains six (6) pages including this page.

Question 1 [25 Marks]

a. A wire of uniform cross section has a resistance of 0.8Ω. If the length of the wire is doubled and its cross sectional area increased 4 times, what is the resistance? (ignore the effect of iemperature).
[4 Marks]
b. Nomally, heat energy is measured in joules (J). Given that you are required to design a heating element to boil a certain amount of waier in 2 minutes using 200 kilojoules of energy. If the heating element is to operate at 240 V . calculate its current and power rating.
[4 Marks]
c. What is the total cost of using the following appliances at 1 Lilangeni 34 cents per kilowat-hour?
i. 100W home theatre system for 2 hours.
[1 Mark]
ii. 150 W LCD TV for 3 hrs 20 minutes
iii. 1500 W electric heater for 30 minutes
[1 Mark]
[1 Mark]
d. Given that two resistors are wound with round copper wire, the length and the diameter of the first wire are : and A respectively and those of the second wire are 0.251 and 0.5A.

1. Detemine the ratio of currents and powers of the two resistors if they are connected across the same voltage source.
ii. If the same current fiows through the two resistors, determine the ratios of voltage and power.
[4 Marks]
e. Consider the circuit shown in Figure Q1e. Given that $I_{2}=2.5 \mathrm{~A}$ and $I_{3}=1.5 \mathrm{~A}$, find the values of R_{2} and R_{3}

Figure Q2.e
[4 Marks]

Question 2 [25 Marks]

a. Reduce the resistor network between teminais A and B of Figure $Q .2$ to a single resistor.
[3 Marks]

Figure Q. $2 a$
b. For the series-parallel network shown in Figure Q.2b. find the following.
(i) The current 1_{5}.
(ii) The currents I_{2} and 18 .
(iii) The current i-.
(iv) The voltage V ab. [12 Marks]

ㅍ.

Figure Q.2b.
c. Given that $I s=4 \mathrm{~A}$, use the current divider rule to evaluate the currents $I I_{1}, I_{2}, I_{3}, I_{4}$ and ${ }^{2}$, I_{6} in Figure Q.2e.
[11 Marks]

Figure Q.2e.

Question 3 [25 Marks]

a. Find the maximum power transferred to R in the circuit of Figure $Q .3 a$.
[10 Marks]

Figure Q.3a.
b. Use nodal analysis to find current I_{1} and I_{2} in the circuit shown in Figure $Q .3 b$.
[10 Marks]

Figure Q.3b.
c. You are told that a capacitor stores 0.3 I of energy when 400 V dec. supply is connected across the capacitor. Find the following.
i. The capacitance.
ii. The charge on the capacitor.

Question 4 [25 Marks]

a. Given the circuit shown in Figure Q.4a, answer the following:?
i. Use mesh analysis to determine current I_{1} and I_{2}

Figure Q.4a
ii. Find the power supplied (or absorbed) by each source of the circuit.
[4 Marks]

1. An impedance $Z_{1}=4-14 \Omega$ is connected in parallel with an impedance $Z_{2}=4 / h^{\prime \prime}$
$-i 6, \Omega$. If he input reactive power is 25004 AR (lagging, what is the total active power?

Question 5 [25 Marks]

a. A circuit consisting of a coil of inductance 10 mH and resistance 30Ω. in series with a capacitance of $4 \mu \mathrm{~F}$ is connected to a variable frequency supply which has a constant voltage 10 V . Determine:
i. The resonance frequency of the circuit. [2 Marks]
ii. The current in the circuit at resonance.
[2 Marks]
iii. The voltages across the inductance and the capacitor at resonance. [3 Marks]
iv: The Q-factor of the circuit [2 Marks]
b. A coll of inductance 0.1 H is connected across a $50 \mathrm{~V}, 60 \mathrm{~Hz}$ supply in parallel with it is a $100 \mu \mathrm{~F}$ capacitor which is also in parallel with a 30Ω resistor as shown in Figure Q.5b. Determine:
i. The total impedance of the circuit.
ii. The branch currents
iii. The total Active Power taken from the supply.
[4 Marks]
iv. The total reactive power supplied.
v. The apparent power supplied.
vi. The power factor of the combined circuits stating whether it is leading or lagging.
[2 Marks]

Figure Q.5b.

End of Paper

