UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE \& ENGINEERING
DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING
DIGITAL SYSTEMS IICOURSE CODE - EE324
MAIN EXAMINATION
MAY 2018
DURATION OF THE EXAMINATION - 3 HOURS

INSTRUCTIONS TO STUDENTS

1. There are FOUR questions in this paper. Answer ALL the questions.
2. Each question caries 25 marks.
3. Show all your steps clearly in any calculations/work.
4. Start each new question on a fresh page.
5. Make sure that this exam contains 3 pages including this one.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION ONE (25 marks)

(a) A $4 \mathrm{~K} \times 8$ memory uses coincident decoding by splitting the internal decoder into X selection and Y-selection.
(i) What is the size of each decoder and how many AND gates are required for decoding the address [pt. 6] ?
(ii) Determine the X and Y selections lines that are enabled when the input address is the binary equivalent of 2,600 [pt. 4].
(b) Specify the size of a ROM that will accommodate the truth table for the following combinational circuit components [pt. 6].
(i) A binary multiplier that multiplies two 4-bit numbers.
(ii) A 4-bit adder-subtractor.
(iii) A BCD-to-seven-segment decoder with an enable input.
(c)
(i) How many $32 \mathrm{~K} \times 8$ RAM chips are needed to provide a memory capacity of 256 K bytes [pt. 3]?
(ii) How many address lines and input-output data lines are needed for a $2 \mathrm{G} \times 32$ RAM [pt. 3]?
(iii) What are the advantages of dynamic RAM over static RAM [pt. 3]?

QUESTION TWO (25 marks)

(a) What is the difference between PLA and PAL [pt. 2]?
(b) Tabulate the truth table for an 8×4 ROM that implements the Boolean functions

$$
\begin{aligned}
& A(x, y, z)=\sum(1,2,5,6) \\
& B(x, y, z)=\sum(0,1,6,7) \\
& C(x, y, z)=\sum(2,6) \\
& D(x, y, z)=\sum(1,2,3,5,6,7)
\end{aligned}
$$

Considering the ROM as a memory, specify the memory contents at addresses 3 and 6 [pt. 5].
(c) Implement the four functions above (b) using the PLA programming. Minimize the number of product terms [pt. 10].
(d) Obtain the 15-bit Hamming code word for the 11-bit data word 11001101011 [pt. 8].

QUESTION THREE (25 marks)

(a) A 12-bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. Determine the original 8-bit data word that was written into memory if the 12-bit word read out is 101110000110 [pt. 5].
(b) A sequential circuit has 2 edge triggered flip-flops (outputs A and B), two inputs (X and Y) and one output Z . The logic expressions for this circuit are [$\mathrm{pt}, 20$]:

$$
\begin{aligned}
D_{a} & =X^{\prime} \cdot Y+X \cdot A \\
J_{b} & =X^{\prime} \cdot B+X^{\prime} \cdot A \\
K_{b} & =Y \cdot B \\
Z & =X \cdot B
\end{aligned}
$$

(i) Construct a transition table (first, construct the flip-flop excitation table.)
(ii) Construct a state diagram

QUESTION FOUR (25 marks)

(a) Briefly describe the basic building blocks of Algorithmic State Machine (ASM) chart [pt. 5].
(b) Draw an ASM chart and state diagram to describe a sequence detector that detects a sequence of 101 [pt. 20].

