UNIVERSITY OF SWAZILAND
MAIN EXAMINATION, FIRST SEMESTER
DECEMBER 2017

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: ANALOGUE DESIGN III COURSE CODE: EE421

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

1. There are five questions in this paper. Answer any FOUR questions. Each question carries 25 marks.
2. If you think not enough data has been given in any question you may assume any reasonable values.
3. Some useful formulas are given in the last page.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS SEVEN (7) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

A circuit of a differential amplifier is shown in Figure-Q1.

Figure-Q1
You may assume that Q_{1}, Q_{2} are of matched high gain type and C_{1}, C_{2} are large unless stated otherwise.
(a) Find the voltage at the collector of Q_{1} and at X when no input signal is applied.
(b) Draw the differential half circuits. Hence calculate the differential voltage gains $\frac{v_{02}}{v_{d}}$ and $\frac{v_{02}-v_{o 1}}{v_{d}}$, deriving any formula you use.
(c) Draw the common mode half circuit for Q_{2}. Derive an expression for the common mode gain at the output $v_{o 2}$, calculate its value and find the $C M R R$ in $d B$.
(d) If $R_{3}=R_{4}=0$, estimate the high frequency $3 d B$ bandwidth.

$$
C_{\pi}=14 p F \quad C_{\mu}=2 p F \quad r_{o}=\infty \quad \beta=100
$$

QUESTION TWO (25 marks)

(a) Consider the circuit shown in Figure-Q2(a) where the two transistors Q_{1} and Q_{2} are matched.
(i) If β is the current gain of the transistors, find an expression for I_{o} with $I_{r e f}$. (3 marks)
(ii) Calculate the value of R that will give $I_{o}=1 m A$, assuming a β of 50 . (4 marks)
(iii) Calculate the output resistance R_{o} when I_{o} is 1 mA . Hence find the value of output current I_{o} when the output voltage v_{o} is 5 V . Assume that the $V_{A}=100 \mathrm{~V}$. (7 marks)

Figure-Q2(a)

Figure-Q2(b)
(b) A circuit of a current source with matched transistors are shown in Figure-Q2(b).
(i) State two advantages of this circuit.
(2 marks)
(ii) Derive an expression for the output current I_{o}.
(iii) Estimate the value of R_{o}. You may use any formula known to you.

$$
I_{r e f}=150 \mu \mathrm{~A} \quad V_{A}=80 \mathrm{~V} \quad \beta=100
$$

QUESTION THREE (25 marks)

(a) An IC amplifier using enhancement type NMOS devices is shown in Figure-Q3(a).
(i) Under quiescent conditions, derive an expression for V_{o} in terms of $V_{i n}$. (6 marks)
(ii) Calculate the value of V_{o} when $V_{i n}=1.5 \mathrm{~V}$, under no signal conditions. You may also assume,

$$
W_{1}=160 \mu m \quad L_{1}=10 \mu m \quad W_{2}=10 \mu m \quad L_{2}=60 \mu \mathrm{~m} \quad \begin{gathered}
V_{t}=1.2 \mathrm{~V} \\
(4 \text { marks })
\end{gathered}
$$

(iii) Draw the small signal equivalent circuit neglecting the body effect. Hence derive an expression for the voltage gain $\frac{v_{0}}{v_{i n}}$ and evaluate its value using the device data given in (ii) above. Assume that the values of r_{01} and r_{02} are large.
(8 marks)

Figure-Q3(a)

Figure - Q3(b)
(b) The circuit in Figure-Q3(b), shows a CMOS amplifier with the following data. You may assume usual notation.
$K_{1}=5 \frac{m A}{V^{2}}$
$K_{2}=2.5 \frac{\mathrm{~mA}}{V^{2}}$
$K_{3}=3 \frac{m A}{v^{2}}$
$I_{r e f}=0.8 \mathrm{~mA}$
$\left|V_{t}\right|=1.2 V$
$\left|V_{A}\right|=80 \mathrm{~V}$
(i) Calculate the source current of Q_{3} at no signal.
(ii) Derive an expression for the voltage gain $\left(\frac{v_{0}}{v_{i}}\right)$ and calculate its value.

QUESTION FOUR (25 marks)

A circuit of a cascode amplifier is shown in Figure-Q4.

Figure-Q4

Assume that the transistors are identical. The coupling and by-pass capacitors and r_{o} can be assumed as large.
(a) (i) Calculate the collector current and collector voltage of Q_{1} under no signal conditions. You may state any assumptions used.

> (4 marks)
(ii) Find an expression for the mid-band gain $\left(\frac{v_{o}}{v_{s}}\right)$, assuming usual notation.
(iii) Calculate the mid-band gain of the amplifier if $\beta=100$.
(b) Estimate the values of pole frequencies of the amplifier and hence determine the high frequency 3 dB bandwidth. You may use,

$$
C_{\pi}=13 p F \quad C_{\mu}=3 p F \quad \beta=100
$$

QUESTION FIVE (25 marks)

(a) Consider the DC regulator circuit shown in Figure-Q5(a).
(i) Calculate the output voltage range.
(ii) If the maximum power dissipation in Q_{1} is limited to 12 W , find the guaranteed maximum load current.
(6 marks)

Figure-Q5(a)

Figure - Q5(b)
(b) A block diagram of a phased locked loop (PLL) is shown in Figure-Q5(b). The phases of the signals are shown as θ_{i} and θ_{o}.
(i) Derive the transfer function $\left(\frac{\theta_{0}}{\theta_{i}}\right)$ for the system if the filter is a simple $R C$ (single R and single C) network.
(ii) If the filter components are $0.01 \mu F$ and $2.2 k$ respectively, estimate the value of σ for the PLL.

$$
K_{P}=4.77 \frac{\mathrm{~V}}{\mathrm{rad}} \quad K_{V}=1.07 \times 10^{3} \frac{\mathrm{~Hz}}{\mathrm{~V}}
$$

1. SOME USEFUL MOSFET EQUATIONS

$i_{D}=\mu_{n} C_{o x} \frac{W}{L}\left[\left(v_{G S}-v_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right]$ in triode region
$i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-v_{t}\right)^{2}$ in saturation region
$i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-v_{t}\right)^{2}\left(1+\lambda v_{D S}\right)$ in saturation region with Channel Modulation effect

$$
V_{A}=\frac{1}{\lambda}
$$

2. Unless otherwise stated $V_{B E(O N)}=0.6 \mathrm{~V}$ and $V_{T}=0.025 \mathrm{~V}$.
