University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2017

Title of Paper	:	Control Engineering I			
Course Number	-	EE431			
Time Allowed	:	3 hrs			
Instructions	2.	Answer any four (4) questions Each question carries 25 marks Useful information is attached at the end of the question paper			

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of Six (6) pages including this page

n ann an Star An Star Star Star

Question 1 (25 Marks)

(a) For the electric circuit given in Figure Q.1

- (i) Determine the state space representation, [10]
- (ii) The transfer function $G(s) = \frac{V_c(s)}{V_i(s)}$, hint $G(s) = G(sI A)^{-1}B + D$ [10]

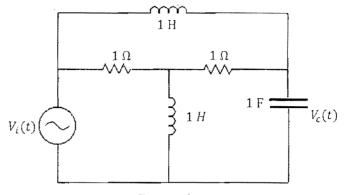


Figure Q.1

(b) Given the following transfer function $\frac{Y(s)}{R(s)} = \frac{s+2}{(s+3)(s+5)(s+7)}$, determine its step response. [5]

Question 2 (25 Marks)

(a) Answ	er the following question	
(i)	Discuss stability in digital systems	[3]
(ii)	What causes an entire row of zeros to show up in a Routh table	[2]
		6.4

- (b) Given the following transfer function $G(s) = \frac{1}{2s+100}$, Sketch the Bode diagram of the system [10]
- (c) Show that for a unit ramp function where f(kT) = kT, the z-transform is $\frac{Tz}{(z-1)^2}$ [10]

. . . .

[1]

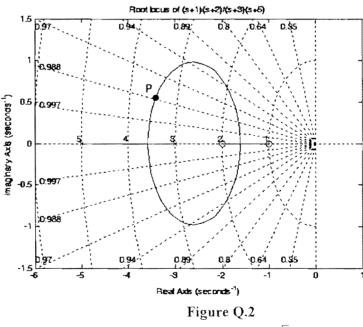
[1]

91

Question 3 (25 Marks)

(a) Define the following terms, *Rise Time, Peak time, Percentage overshoot* for 2nd order system.

(b) Given the following transfer function $G(s) = \frac{225}{s^2 + 30s + 225}$, determine the following


- (i) Natural frequency [1]
- (ii) Damping ratio
- (iii) State the step response in relation with the damping ratio, ξ . [1]
- (iv) Settling Time
- (c) Given a feedback system whose open-loop transfer function is

$$G(s) = \frac{K(s+3)}{(s+5)(s+8)(s+12)}$$

Where K is the feedback gain. Evaluate the system's close-loop behaviour using the root locus technique.

- (i) How many asymptotes are there in this system's root locus? What are the asymptotes angles? [2]
- (ii) Where is the asymptotes real-axis intercept? [2]
- (iii) Sketch the root locus based on the information from the previous questions. [6]
 - NB: No need to annotate break-in/away points and imaginary axis intercepts, if there are any.
- (iv) If you had to recommend this system to a customer, what would you advise with respect to increasing the feedback gain K indefinitely? [3]

(d) Study the diagram below and answer the questions that follow.

Is it possible to tune this system to achieve a damping ratio of $\frac{\sqrt{2}}{2}$ Explain your answer? [3] Is it possible to achieve the following settling time. Explain your answer

(i)	Ts = 1 sec	[1]
(1)	Ts = 1 sec	

(ii) Ts = 4 sec [1]

[2]

Question 4 (25 Marks)

(a) Given the following transfer function

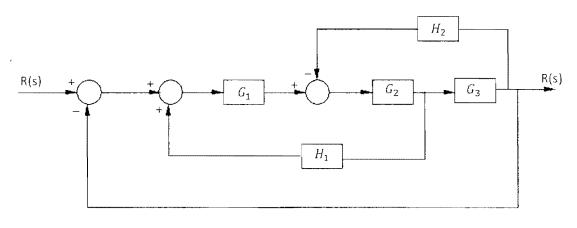
$$T(s) = \frac{5}{s^2 + 7s + 10}$$

Find the steady state error for the following input functions

- (i) For Unit step [3]
- (ii) Unit Ramp
- (b) Determine the range of K to make the following system stable and is it possible to get a steady state error of 5% with this design of K ?. Determine the expected minimum steady state error for this system [15]

$$G(s) = \frac{K(s+20)}{s(s+2)(s+3)}$$

(c) Determine the magnitude and phase angle expressions and hence sketch polar plot the following transfer function: [5]


$$G(j\omega) = rac{e^{-j\omega L}}{(1+j\omega T)}$$

Question 5 (25 Marks)

(a) Given the following system draw the signal flow diagram [5]

$$\dot{\mathbf{x}} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -3 & 1 \\ -3 & -4 & -5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{r}$$
$$\mathbf{y} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \mathbf{x}$$

(b) Reduce the system shown in Figure Q.3 to a single transfer function using Mason's rule [10]

Figure Q.3

(c) Verify your answer in (b) using the block reduction method. [10]

٠

Component	Voltage-current	Current-voltage	Voltage-charge	$\frac{\text{Impedance}}{Z(s)} = V(s)/I(s)$	$\begin{array}{l} \text{Admittance} \\ Y(s) = \\ I(s)/V(s) \end{array}$
	$v(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-//// Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
 Inductor	$\mathbf{v}(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Note: The following set of symbols and units is used throughout this book: v(t) = V (volts), i(t) = A (amps), q(t) = Q (coulombs), C = F (farads), $R = \Omega$ (ohms), G = U (mhos), L = H (henries).

Table 2

Component	Force- velocity	Force- displacement	impedance $Z_M(s) = F(s)/X(s)$
Spring x(1) f(1) K	$f(t) = K \int_0^t v(\tau) d\tau$	f(t) = K x(t)	K
Viscous damper x(t) f_{x}	$f(t) = f_{v} v(t)$	$f(t) = f_{v} \frac{dx(t)}{dt}$	fus
$M_{A'} \le x(t)$ $M \longrightarrow f(t)$	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	M s ²

Note: The following set of symbols and units is used throughout this book: f(t) = N (newtons), x(t) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter), $f_v = N-s/m$ (newton-seconds/meter), M = kg (kilograms = newton-seconds²/meter).

Table 3

		Туре О		Type 1		Туре 2	
input	Steady-state error formula	Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, u(t)	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_p}$	$K_p = x$	0	$K_p = \infty$	0
Ramp, <i>tu</i> (t)	$\frac{1}{K_{y}}$	$K_{\nu} = 0$	x	K _v = Constant	$\frac{1}{K_y}$	$K_v = x$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_{\sigma} = 0$	x	$K_a = 0$	Ŧ	K _a = Constant	$\frac{1}{K_{a}}$

Static Error Constants

For a step input, u(t),

$$e(\infty) = e_{step}(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

For a ramp input, tu(t),

$$e(x) = e_{ramp}(x) = \frac{1}{\lim_{s \to 0} sG(s)}$$

For a parabolic input, $\frac{1}{2}t^2u(t)$,

$$e(\infty) = e_{\text{parabola}}(\infty) = \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

Position constant, K_p , where

$$K_p = \lim_{s \to 0} G(s)$$

Velocity constant, K_v, where

$$K_r = \lim_{t \to 0} sG(s)$$

Acceleration constant, K_a , where

$$K_a = \lim_{s \to 0} s^2 G(s)$$

$$f^*(t) = \sum_{k=0}^{\infty} kT\delta(t - kT)$$
$$F^*(s) = \sum_{k=0}^{\infty} kTe^{-kTs}$$
$$e^{-kTs} = Z^{-k}$$