UNIVERSITY OF SWAZILAND
FACULTY OF SCIENCE \& ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION DECEMBER 2017

TITLE OF PAPER:	ELECTROMAGNETIC FIELDS II
COURSE CODE:	EE441
TIME ALLOWED:	THREE HOURS

INSTRUCTIONS:

1. Answer all four (4) questions
2. Each question carries 25 marks.
3. Marks for different sections are shown in the right-hand margin.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

a) A light source in the visible part of the electromagnetic spectrum is place in a swimming pool at a depth of 1.2 meters below the water surface. The water, in this swimming pool, has a refraction index equal to 1.40 .
I. What is the critical angle for the light waves generated by the light source?(4 marks)
II. How large a circle would the isotropic beam from the light source be when observed from the water surface (find circle's diameter)?
(4 marks)
b) A generator with series impedance $\mathrm{Z}_{\mathrm{g}}=50 \Omega$ and voltage source given by

$$
v_{g}(t)=20 \cos \left(2 \pi \times 10^{9} t+45^{\circ}\right)
$$

is connected to a load $\mathrm{Z}_{\mathrm{L}}=(50+j 100) \Omega$ through a $50-\Omega, 41.35-\mathrm{cm}$ long lossless transmission line. The phase velocity u_{p} of the transmission line is 0.8 c , where $\mathrm{c}=3 \times 10^{8}$ which is the velocity of light in a vacuum.

Determine
I. The wavelength λ,
ii. The phase constant β,
III. The reflection coefficient Γ, and

1V. The input impedance $Z_{i n}$,

QUESTION 2

In a medium with $\varepsilon=25 \varepsilon_{0}$ and $\mu=\mu_{0}$ the magnetic field is given by

$$
\mathrm{H}(\mathrm{z}, \mathrm{t})=\widehat{x} \cos \left(2 \pi \times 10^{9} t-k z\right) \quad(\mathrm{mA} / \mathrm{m})
$$

determine
a) Wavenumberk, and (4 marks)
b) The electric field E.

QUESTION 3

a) ATM wave propagating in a dielectric-filled waveguide of dimensions $a=2 \mathrm{~b}=8 \mathrm{~cm}$, and of unknown permittivity has a magnetic field with y-component given by

$$
H_{y}=5 \cos (25 \pi x) \sin (100 \pi y) \times \sin \left(3 \pi \times 10^{10}-150 \pi z\right)(\mathrm{mA} / \mathrm{m})
$$

Determine
I. The mode numbers, and (5 marks)
II. The phase velocity.
$\left[\right.$ Hint: $\left.\hat{H}_{y}=\frac{j \omega \varepsilon}{K_{c}^{2}}\left(\frac{m \pi}{a}\right) E_{0} \cos \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) e^{-j \beta z}\right]$
b) The electric field of a plane wave is given by $E(z, t)=\widehat{x} 3 \cos (\omega t-k z)+\widehat{y} 5.196 \cos (\omega t-k z)$.

Determine
I. The polarization state
II. The modulus of E
III. The auxiliary angle
(4 marks)
c) In case of single-stub matching network, What are the two degrees of freedom? (2 marks)
d) According to Faraday's law, under what three conditions can an emf be generated in a closed conductíng loop.

QUESTION 4

Suppose a 1.2 m long transmission line with a characteristic impedance of 75Ω is terminated by a 125Ω load, and excited by a rectangular pulse of duration 2 ns that start at time $t=0$. The pulse is supplied by a generator with 50Ω impedance. Given that the pulse amplitude is 5 V and the phase velocity is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Generate a bounce diagram and use it to plot the voltage waveform at the load.
(25 marks)

