UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE & ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION DECEMBER 2017

TITLE OF PAPER:	ELECTROMAGNETIC FIELDS II
COURSE CODE:	EE441
TIME ALLOWED:	THREE HOURS

INSTRUCTIONS:

- 1. Answer all four (4) questions
- 2. Each question carries 25 marks.
- 3. Marks for different sections are shown in the right-hand margin.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Page 1 of 3

103

QUESTION 1

- a) A light source in the visible part of the electromagnetic spectrum is place in a swimming pool at a depth of 1.2 meters below the water surface. The water, in this swimming pool, has a refraction index equal to 1.40.
 - I. What is the critical angle for the light waves generated by the light source?(4 marks)
 - II.How large a circle would the isotropic beam from the light source be when observed
from the water surface (find circle's diameter)?(4 marks)
- b) A generator with series impedance $Z_g = 50 \Omega$ and voltage source given by

 $v_a(t) = 20\cos(2\pi \times 10^9 t + 45^0)$ (V)

is connected to a load $Z_L = (50 + j100) \Omega$ through a 50- Ω , 41.35-cm long lossless transmission line. The phase velocity u_p of the transmission line is 0.8c, where $c = 3 \times 10^8$ which is the velocity of light in a vacuum.

Determine

1.	The wavelength λ ,	(2 marks)
Π.	The phase constant β ,	(3 marks)
III.	The reflection coefficient Γ, and	(4 marks)
IV.	The input impedance Z_{in} ,	(8 marks)

QUESTION 2

In a medium with $\epsilon=25\epsilon_0$ and $\mu=\mu_0$ the magnetic field is given by

 $H(z,t) = \hat{x}\cos(2\pi \times 10^9 t - kz) \quad (mA/m)$

determine

- a) Wavenumberk, and
- b) The electric field E.

(4 marks) (21 marks)

(5 marks)

(4 marks)

QUESTION 3

a) A TM wave propagating in a dielectric-filled waveguide of dimensions a=2b=8cm, and of unknown permittivity has a magnetic field with y-component given by

 $H_y = 5\cos(25\pi x)\sin(100\pi y) \times \sin(3\pi \times 10^{10} - 150\pi z) (mA/m).$

Determine

- I. The mode numbers, and
- II. The phase velocity.

[Hint:
$$\hat{H}_y = \frac{J\omega\varepsilon}{\kappa_c^2} \left(\frac{m\pi}{a}\right) E_0 \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$
]

b) The electric field of a plane wave is given by $E(z,t) = \hat{x}3\cos(\omega t - kz) + \hat{y}5.196\cos(\omega t - kz)$.

Determine

I.	The polarization state	(3 marks)
II.	The modulus of E	(4 marks)
III.	The auxiliary angle	(4 marks)

- c) In case of single-stub matching network, What are the two degrees of freedom? (2 marks)
- d) According to Faraday's law, under what three conditions can an emf be generated in a closed conducting loop. (3 marks)

QUESTION 4

Suppose a 1.2m long transmission line with a characteristic impedance of 75 Ω is terminated by a 125 Ω load, and excited by a rectangular pulse of duration 2 ns that start at time t = 0. The pulse is supplied by a generator with 50 Ω impedance. Given that the pulse amplitude is 5 V and the phase velocity is 3×10^8 m/s. Generate a bounce diagram and use it to plot the voltage waveform at the load. (25 marks)