University of Swaziland Faculty of Science and Engineering Department of Electrical and Electronic Engineering

Supplementary Examination - July 2018

Title of paper: Communication System Principles
Course Number: EE442

Time allowed: 3 hours

Instructions:

1. Answer any FOUR (4) questions
2. Each question carries 25 marks
3. Marks for each question are shown at the right hand margin

This paper contains 4 pages including this one.

This paper should not be opened until permission has been granted by the invigilator.

Question 1

a) List and describe 3 examples of communication channels
b) Given the following input signal $s(t)=\{1+3 i ; 3+3 i ;-3+1 i\}$ and the noise signal, $n(t)=\{0.8+1.1 i ; 0.9-0.4 i ;-0.6+0.1 i\}$ find the received signal $r(t)$ of an additive channel
c) Given the signal Figure 1 below, perform the operations below and draw the sketch of the new signal
i) Time shift by $n=2$
ii) Time reversal
d) Show that the SNR for a DSB-SC is given by the equation below

$$
\begin{equation*}
\left(\frac{S}{N}\right)_{0 D S B}=\frac{P_{R}}{N_{0} W}, \text { where } P_{R}=\frac{A_{c}^{2} P_{M}}{2} \tag{7}
\end{equation*}
$$

Figure 1

Question 2

a) An angle modulation (AM) system uses a carrier signal $c(t)=10 \cos \left(2 \pi 10^{8} t\right)$ and a message signal $m(t)=6 \cos \left(2 \pi 10^{4} t\right)$. Given that $k_{f}=50$, and $k_{p}=30$
i) Calculate the modulation indexes β_{f} and β_{p}
ii) Write the signal expression of the phase modulated signal and the frequency modulated signal using the modulation indexes above
b) Let the message signal be $m(t)$ and the carrier signal $c(t)=5 \cos (2 \pi(600) t)$
i) For the conventional DSB AM modulated signal $u(t)$, find the Fourier transform. $U(f)$ and express it in terms of $M(f)$
ii) Sketch the spectrum of the signal $M(f)$ and $U(f)$ assuming $M(f)$ has a bandwidth $W=200$
iii) Find the power of the modulated signal $u(t)$ given that $P_{m}=3 \mathrm{~mW}$

Question 3

a) Given the autocorrelation of a signal to be $R_{X}(\tau)=\frac{A^{2}}{2} \cos \left(2 \pi f_{0} \tau\right)$.
i) Find the power spectral density of the signal
ii) From the power spectral density, find the power of the signal
iii) Show that $P_{x}=R_{X}(0)$
b) Draw the geometric representation of the following digital modulation schemes
i) Binary Antipodal signals
ii) Binary Orthogonal signals
c) Show that the code below is a linear block code

$$
C=\{00000,10100,01111,11011\}
$$

Question 4

a) Given the Tanner graph Figure 4(a) below,
i) Derive the parity check matrix \mathbf{H}
ii) Find the density r of the code
iii) State whether the code is regular or irregular and justify your answer.
iv) Write the definition of the code i.e. (n, k)

Figure 4(a)
b) The figure below, Figure 4(b), shows a convolutional encoder,
i) Find the generator sequences
ii) Find the rate of the code for $k=I$ and the number of states

Figure 4(b)

Question 5

a) In a binary communication system, the input bits transmitted over the channel are either 0 or 1 with probabilities 0.3 and 0.7 , respectively. When a bit is transmitted over the channel, it can be either received correctly or incorrectly (due to channel noise). Let us assume that if a 0 is transmitted, the probability of it being received in error (i.e., being received as 1) is 0.01 , and if a 1 is transmitted, the probability of it being received in error (i.e., being received as 0) is 0.1 .
i) What is the probability that the output of the channel is 1 ?
ii) Assuming we observe a one at the output of the channel, what is the probability that the input to the channel was a 1 ?
b) Show that the SNR of a conventional AM system is given by

$$
\begin{gathered}
\left(\frac{S}{N}\right)=\eta\left(\frac{S}{N}\right)_{b} \\
\eta=\frac{a^{2} P_{M_{n}}}{\left[1+a^{2} P_{M_{n}}\right]}
\end{gathered}
$$

c) Find the SNR in a baseband signal with a bandwidth of 5 kHz with a noise power spectral density given by $\frac{N_{0}}{2}=10^{-14} \mathrm{~W} / \mathrm{Hz}$. The transmitter power is 1 kW and the channel attenuation is $a=10^{-12}$

