University of Swaziland Faculty of Science and Engineering Department of Electrical and Electronic Engineering

int North State State

Main Examination 2018

Title of paper: Introduction to Digital Signal Processing

Course Number: EE443

Time allowed: 3 hours

Instructions:

- 1. Answer any FOUR (4) questions
- 2. Each question carries 25 marks
- 3. Marks for each question are shown at the right hand margin
- 4. Useful information is attached at the end of the examination paper

This paper contains 6 pages including this one.

This paper should not be opened until permission has been granted by the invigilator

.

Question 1

(a) Show that the accumulator system defined by the equation below is time invariant [6]

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

- (b) Given the sequences $x_1[n] = 3\delta[n] 2\delta[n-1]$ and $x_2[n] = 2\delta[n] \delta[n-1]$, find the convolution sum given by the equation below, using the z-transforms $x_{conv}[n] = x_1[n] \star x_2[n]$; where \star denotes convolution [5]
- (c) Using the partial fraction expansion method, find the inverse of the following ztransform

$$Y(z) = \frac{1}{(1-z^{-1})(1-0.5z^{-1})}$$
[7]

(d) Realize the following digital filter using a direct form II:

$$H(z) = \frac{0.7157 + 1.4314z^{-1} + 0.7151z^{-2}}{1 + 1.3490z^{-1} + 0.5140z^{-2}}$$
[7]

.

Question 2

(a) Find
$$x(n)$$
 if
i) $X[z] = \frac{z^{-4}}{z^{-1}} + z^{-6} + \frac{z^{-3}}{z^{+0.5}}$
[4]
ii) $X[z] = 2 + \frac{4z}{z^{-6}} + \frac{z}{z^{-6}}$
[4]

ii)
$$X[z] = 2 + \frac{\pi z}{z-1} + z^{-6} + \frac{z}{z-0.5}$$
 [4]

(b) Consider the sequence

Assuming that $f_s = 100 Hz$

- Evaluate its DFT X(k)i) [4]
- ii) Compute the amplitude, phase, and power spectrum. [12] [1]
- iii) Compute the frequency resolution

Question 3

(a) Given the normalized lowpass filter with a cutoff frequency of 1rad/sec below:

$$H_p(s) = \frac{1}{s+1}$$

Use $H_p(s)$ above and the BLT to design a corresponding digital IIR lowpass filter with a cutoff frequency of 15 kHz at a sampling frequency of 90 kHz [15]

- (b) Considering the sequence x[0] = 4, x[1] = 2, x[2] = 3, and given f_s = 100Hz, T = 0.01s compute the magnitude spectrum of X[k] where X[k] is the DFT of x_w[n], using the using the Hamming window given by w_{hm}(n) = 0.54 0.46 cos (^{2πn}/_{N-1}).
 [8]
- (c) Describe how to control spectral leakage.

[2]

Question 4

(a) Given the FIR filter:

y(n) = 0.1x(n) + 0.25x(n-1) + 0.2x(n-2)Determine the transfer function, the filter length, the non-zero coefficients and the impulse response. [9]

(b) Show that the equation below

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk} \text{ for } k = 1, 2, ..., N-1.$$

Can be simplified to the following two terms

$$X[2m] = \sum_{n=0}^{\frac{N}{2}-1} a[n] W_{N/2}^{mn} \text{ for } k = 1, 2, ..., \frac{N}{2} - 1$$
$$X[2m+1] = \sum_{n=0}^{\frac{N}{2}-1} b[n] W_N^n W_{N/2}^{mn} \text{ for } k = 1, 2, ..., \frac{N}{2} - 1$$
[8]

(c) Draw the eight-point FFT.

[8]

Question 5

(a) Given the fourth-order filter transfer function designed as

$$H(z) = \frac{0.5108z^2 + 1.0215z + 0.5108}{z^2 + 0.5654z + 0.4776} \times \frac{0.3730z^2 + 0.7460z + 0.3730}{z^2 + 0.4129z + 0.0790}$$

n an Alagit na **agit** na ¹⁶≉

.

Realize the digital filter using the cascade (series) form via second-order sections using Direct-Form I and Direct-Form II. [13]

(b) Write the mathematical definitions of the following sequences

i) Unit sample sequence	[2]
ii) Exponential sequence	[2]
iii) Unit step sequence	[2]

(c) Write the synthesis and analysis equations of the DFT [6]

Time Domain	z-Transform
$ax_1(n) + bx_2(n)$	$\overline{aZ(x_1(n)) + bZ(x_2(n))}$
$x(n-m) = \infty$	$z^{-m}X(z)$
$x_1(n) * x_2(n) = \sum_{k \ge 0} x_1(n-k) x_2(k)$	$X_1(z)X_2(z)$
	$ax_1(n) + bx_2(n) x(n-m) x_1(n)*x_2(n) = \sum_{n=1}^{\infty} x_1(n-k)x_2(k)$

Table 1: Properties of z-transform

Table 2: Partial fraction(s) and formulas for constant(s).

Partial fraction with the first-order real pole: $\frac{R}{z-p} \qquad R = (z-p)\frac{X(z)}{z}\Big|_{z-p}$ Partial fraction with the first-order complex poles: $\frac{Az}{(z-P)} + \frac{A^*z}{(z-P^*)} \qquad A = (z-P)\frac{X(z)}{z}\Big|_{z-P}$ $P^* = \text{complex conjugate of } P$ $A^* = \text{complex conjugate of } A$ Partial fraction with *m*th-order real poles: $\frac{R_m}{(z-p)} + \frac{R_{m-1}}{(z-p)^2} + \dots + \frac{R_1}{(z-p)^m} \qquad R_k = \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} \left((z-p)^m \frac{X(z)}{z} \right)\Big|_{z-p}$

Table 3: Analog lowpass prototype transformations

Filter Type	Prototype Transformation
Lowpass	$\frac{s}{\omega_c}$, ω_c is the cutoff frequency
Highpass	$\frac{\omega_c}{s}$, ω_c is the cutoff frequency
Bandpass	$\frac{s^2+\omega_0^2}{sW}, \omega_0 = \sqrt{\omega_l \omega_h}, W = \omega_h - \omega_l$
Bandstop	$\frac{\delta W}{\delta^2 + \omega_0^2}, \omega_0 = \sqrt{\omega_l \omega_h}, W = \omega_h - \omega_l$

Line N	lo. $x(n), n \ge 0$	z-Transform X(z)	Region of Convergence
1	x(n)	$\sum_{n=0}^{\infty} x(n) z^{-n}$	
2	$\delta(n)$	1	$z_i^i > 0$
3	at(n)	$\frac{dz}{z-1}$	z >1
4	m(n)	$\frac{z}{(z-1)^2}$	z >1
5	$n^2 u(n)$	$\frac{z(z+1)}{(z-1)^3}$	z > 1
6	$a^n u(n)$	$\frac{z}{z-a}$	z > a
7	$e^{-nu}u(n)$	$\frac{z}{(z-e^{-a})}$	$ z > e^{-a}$
8	$ma^n u(n)$	$\frac{dz}{(z-a)^2}$	z > a
9	sin (an)u(n)	$\frac{z\sin(a)}{z^2 - 2z\cos(a) + 1}$	z > 1
10	$\cos(an)u(n)$	$\frac{z[z-\cos{(a)}]}{z^2-2z\cos{(a)}+1}$	z >1
11	$a^n \sin{(bn)u(n)}$	$\frac{[a\sin(b)]z}{z^2 - [2a\cos(b)]z + a^2}$	z > a
12	$a^n \cos{(bn)u(n)}$	$\frac{z[z-a\cos(b)]}{z^2 - [2a\cos(b)]z + a^{-2}}$	z > a
13	$e^{-an}\sin(bn)u(n)$	$\frac{[e^{-a}\sin(b)]z}{z^2 - [2e^{-a}\cos(b)]z + e^{-2a}}$	$\langle z angle > e^{-d}$
14	$e^{-an}\cos{(bn)u(n)}$	$\frac{z[z - e^{-a}\cos(b)]}{z^2 - [2e^{-a}\cos(b)]z + e^{-2a}}$	$ z > e^{-a}$ $ z > e^{-a}$
15	$2[A(P ^n \cos(n\theta + \phi)u(n)]$ where P and A are complex constants defined by $P = [P]_{\mathcal{L}}\theta, A = \frac{1}{2}$	$\frac{Az}{z-P} + \frac{A^*z}{z-P^*}$	

The Z-transform