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Question 1

(a) Show that the accumulator system defined by the equation below is time invariant [6]
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(b) Given the sequences xy[n] = 36[n] - 26[n - 1] and x,[n] = 26[n] — &[n — 1],
find the convolution sum given by the equation below, using the z-transforms
Xconvln] = x1[n] * x5 [n]; where * denotes convolution [5]

(c) Using the partial fraction expansion method, find the inverse of the following z-
transform
1
Y(2) = (1-z"1)(1~05z"1) [7]
(d) Realize the following digital filter using a direct form 11:
0.7157 + 1.4314z71 + 0.7151z72

H(@) = =337 349027 7 0514077
[7]
Question 2
(a) Find x(n) if
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Assuming that f; = 100 Hz
i) Evaluate its DFT X (k) [4]
ii) Compute the amplitude, phase, and power spectrum. [12]
iii) Compute the frequency resolution [



Question 3

(a) Given the normalized lowpass filter with a cutoff frequency of 1rad/sec below:

1
H,(s) = ———
p(5) s+1
Use Hp(s) above and the BLT to design a corresponding digjtal IIR lowpass filter

with a cutoff frequency of 15 kHz at a sampling frequency of 90 kHz [15]

(b) Considering the sequence x[0] = 4, x[1] = 2, x[2] = 3, and given f; = 100Hz,
T = 0.01s compute the magnitude spectrum of X[k] where X[k] is the DFT of x,, [n],

using the using the Hamming window given by wy,,,(n) = 0.54 — 0.46 cos (—E’—t_ﬁ)
(8]

(c) Describe how to control spectral leakage.

(2]
Question 4
(a) Given the FIR filter:
y(n) = 0.1x(n) + 0.25x(n — 1) + 0.2x(n — 2)
Determine the transfer function, the filter length, the non-zero coefficients and the
impulse response. [9]
(b) Show that the equation below
N-1
X[K] = Z x[MIWE fork =12,..,N -1,
n=_
Can be simplified to the following two terms
N
771 N
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X[2m+1] = Z DIIWRWRE for k = 12,5~ 1
n=0
[8]

(c) Draw the eight-point FFT. [8]



Question 5

(a) Given the fourth-order filter transfer function designed as

0.510822 + 1.0215z + 0.5108 . 0.3?3022 + 0.7460z + 0.3730
z? + 0.5654z + 0.4776 . z2 +0.4129z + 0.0790

H(z) =

Realize the digital filter using the cascade (series) form via second-order sections
using Direct-Form [ and Direct-Form II. [13]

(b) Write the mathematical definitions of the following sequences

i) Unit sample sequence [2]
il) Exponential sequence 2]
iii) Unit step sequence [2]
(c) Write the synthesis and analysis equations of the DFT [6]



Table 1: Properties of z-transform

Property Time Domain z-Transform
Linearity axy(n) - hx{n) aZ{xi(n)y -+ bZ{x2(n))
Shifi theorem x(n ~ n) . LaeD ¢ 5.1
Linear convolution Xp(msxa(n) = Y x(n o~ k)xadk) X)X

£0

Table 2: Partial fraction(s) and formulas for constant(s).

Partial fraction with the lirst-order real pole:

R X(2)]
A ReGop)
- p - St
Parual Iraction with the first-order complex poles:

Az Az Xz
A A A= - py 22
z-P) - SESY
P = complex conjugate of P
A* = complex conjugate of A
Partial [raction with mth-order real poles:
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Table 3: Analog lowpass prototype transformations
Filter Type Prototype Translormation
Lowpass =, w, 1s the cutolf frequency
— [ re . T e AYYOAS
Highpass 2, @, 1s the cutoff frequency
T & ] .

Bandpass s 0o = oy, Wos ey -~
Bandstop ’ e 0y = ooy, W w, - o




The Z-transform
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where £ and A are
complex constants

defined by P = P4~ A
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