Maria Antonia

153

UNIVERSITY OF SWAZILAND MAIN EXAMINATION, NOVEMBER/DECEMBER 2017

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER:	INSTRUMENTATION SYSTEMS
COURSE NUMBER:	EE521
TIME ALLOWED:	THREE HOURS

INSTRUCTIONS:

- 1. There are five questions in this paper. Answer any FOUR questions.
- 2. Each question carries 25 marks.
- 3. Marks for different sections are shown on the right hand margin.
- 4. Show the steps clearly in all your calculations including any assumptions made.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER HAS SIX(6) PAGES INCLUDING THIS PAGE

QUESTION 1 (25 marks)

(a) Distinguish between the following terms as used in measurements:

(i)	Active and passive transducers.) (2 mai	rks)
(ii)	Echo and Doppler ultrasound.	(2 mar	rks)
(iii)	Sensitivity and resolution.	(2 mai	rks)
(iv)	Frost point and dew point.	(2 mai	rks)
(v)	Gauge pressure and absolute pressure.	(2 mai	rks)

- (b) The voltage across a resistive sensor R_2 is measured using the simple voltage divider circuit shown in Fig Q2.b. The true voltage V_{oT} across the sensor is obtained only when a voltmeter of infinite input impedance is used. However, in practice, a voltmeter of finite input impedance R_m is used, and a measured voltage V_{om} is obtained.
 - (i) Show that the ratio of measured voltage V_{on} to the true voltage V_{oT} is given by

$$\frac{V_{om}}{V_{oT}} = \frac{R_m(R_1 + R_2)}{R_1(R_1 + R_m) + R_2 R_m}$$
(6 marks)

(ii) If $R_1 = R_2 = 480 \ \Omega$ and $R_m = 10 \ k\Omega$, find the % error in the measured value.

(5 marks)

(iii) With the aid of a circuit diagram, show how this circuit may be modified so that the meter indicates a value as close as possible to the true voltage. (4 marks)

Fig. Q2.b

154

Page 2 of 6

QUESTION 2 (25 marks)

- (a) What is the average velocity in a pipe, if the diameter of the pipe is 0.82 cm and the flow rate is 90 cm³/s?
 (3 marks)
- (b) (i) A quartz piezoelectric material has rectangular dimensions 5 mm x 5 mm x 1.5 mm), and charge sensitivity of 155 pF/N. The modulus of elasticity the material is $E = 12 \times 10^{10}$ Pa. If a compressive force of 10 N is applied normal to the 5 mm x 5 mm face of the quartz, determine:

i.	The resulting strain.	(2 marks)
ii.	The charge generated.	(2 marks)
iii.	The capacitance.	(2 marks)
	1	

à

(ii) Explain the following in connection with use of quartz materials:

(i)	Why they are not normally used in static measurements.	(2 marks)
(ii)	How they can be used in measurement of acceleration.	(4 marks)

- (c) A solid state pressure sensor with sensitivity 25 mV/Pa is fixed to the bottom of a tank to measure the level of liquid in the tank. The liquid has a density of 1.3×10³ kg/m³ and the level of liquid in the tank varies from 0.0 (empty) to 2.0 m (full).
 - (i) Specify the range of the pressure sensor required. (6 marks)
 - (ii) What is the sensor output when the tank is full? (2 marks)
 - (iii) What is the sensitivity of the sensor per cm of depth? (2 marks)

Page 3 of 6

QUESTION 3 (25 marks)

- (a) (i) Briefly describe the construction and principles of operation of a Linear Variable
 Differential Transformer (LVDT) as a displacement and position sensor. (8 marks)
 - (ii) The output of an LVDT is connected, through an amplifier whose amplification factor is 120, to a 3-and-half digit voltmeter on its 2-V range. If an output of 6 mV appears at the LVDT output when a displacement of 0.5 mm is made, determine:
 - i. The sensitivity of the whole instrument. (3 marks)

÷

- ii. The resolution of the instrument in mm. (3 marks)
- iii. The displacement when the voltmeter reads 1.652 V. (3 marks)
- (b) A sensor output signal range is 25 mV to 250 mV. Develop a signal conditioning circuit to feed this signal to an ADC input which has a 0 to 5 V input signal range. The circuit should have high input impedance so as not to load the sensor. (8 marks)

Page 4 of 6

A. 1. 2

QUESTION 4 (25 marks)

- (a) What is the change in light intensity when the distance from a light source is increased from 10 m to 27 m?
 (3 marks)
- (b) A light beam directed to a CdS photoconductive cell is used for counting objects interrupting the beam as they pass across the beam. The cell has a dark resistance of 120 kΩ and a resistance of 33 kΩ when in the light beam. The cell has a first order response with time constant of 75 ms.
 - (i) Design a circuit which alters the state of an analogue comparator within 12 ms of the interruption of the light beam. (8 marks)
 - (ii) Estimate, with reasons, the maximum number of objects which this system can count every minute. (2 marks)
- (c) A strain gauge of a nominal resistance $R = 350 \Omega$ and gauge factor K = 2.1 is used to measure stresses of up to 200 MPa in a material which has modulus of elasticity E = 250 GPa.
 - (i) What is the expected maximum change in strain gauge resistance? (5 marks)
 - (ii) Develop a circuit which would enable this strain gauge to give an output voltage from 0 V (with no stress) up to 1.5 V when full stress is applied. (7 marks)

2 Page 6 o

EE521 INSTRUMENTATION SYSTEMS

QUESTION 5 (25 marks)

- (a) A fourth order equal-component Sallen-Key lowpass filter with a cut-off frequency of 620
 Hz is required for anti-aliasing.
 - (i) What is meant by anti-aliasing? (2 marks)
 - (ii) Draw a circuit diagram of the filter. (2 marks)
 - (iii) Given that a 4th order Sallen-Key equal-component lowpass filter needs gain values of G = 1.152 and 2.235, complete the design by working out the values of all the components in the circuit. (9 marks)
- (b) Design a circuit to transmit a 0 to 3 V analogue signal over a 4 mA to 20 mA current transmission loop. Assume that load is floating and that amplifiers saturate at ±10 V.
 What are limits of the load resistance at the receiver? (12 marks)