UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION JULY 2018

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: Power System Analysis and Operation COURSE CODE : EE552 TIME ALLOWED: Three Hours

INSTRUCTIONS:

- 1. There are five questions in this paper.
- 2. Answer any four questions. Each question carries 25 marks.
- 3. If you think not enough data has been given in any question you may assume any reasonable values.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS FOUR (4) PAGES INCLUDING THIS PAGE

Question 1 (25 Marks)

The cost characteristic equations of two units in a plant are

$$C_{1} = 0.4P_{1}^{2} + 160P_{1} + 600 \qquad E/h$$

$$C_{2} = 0.45P_{2}^{2} + 120P_{2} + 450 \qquad E/h$$

$$C_{3} = 0.6P_{3}^{2} + 140P_{3} + 500 \qquad E/h$$

$$30 \le P_{1} \le 90 MW$$

$$30 \le P_{2} \le 100 MW$$

$$30 \le P_{3} \le 90 MW$$

Where P_1 and P_2 and P_3 are power outputs in MW.

(a) Find the optimum load allocation between the three units when the total load is 250 MW. [19]

(b) What will be the daily loss if the units are loaded equally?

[6]

Question 2 (25 Marks)

- (a) Discuss the effect of acceleration factor in the load flow solution algorithm. [2]
- (b) What is Jacobian matrix? How the elements of Jacobian matrix are computed in load flow solution? [2]
 (c) What are the advantages and disadvantages of Newton-Raphson method? [3]
- (d) The per unit reactance diagram of a three bus network shown in Fig Q.2 has the bus impedance matrix given by

Fig. Q.2 Three Bus Network

- i. A three-phase fault occurs at bus 3 through a fault impedance of $Z_f = 0.012$ per unit. Using the bus impedance matrix calculate the *fault current*, bus voltages, and line currents during fault. [8]
- ii. Determine the new bus impedance matrix when breakers A and B are opened due to a fault. [10]

Page 2 of 4

Question 3 (25 Marks)

antan Antana ang Karatan

(b) Given the positive, negative and zero sequence impedance of a power system as follows $Z_+ = j0.5$ $Z_- = j0.7$ and $Z_0 = j0.2$ find the voltages and currents at the fault point for a line-to-line fault through an impedance $Z_f = j0.02$ pu [20]

Question 4 (25 Marks)

(a) Show that for a three winding transformer shown in Fig. Q.4, $V_{1pu} = V_{2pu}$ [10]

 $I_1 \xrightarrow{V_1 \quad N_1} \underbrace{ \begin{bmatrix} N_2 \\ N_2 \end{bmatrix}}_{V_3} \underbrace{ \begin{bmatrix} N_2 \\ V_2 \end{bmatrix}}_{V_3} \underbrace{ \begin{bmatrix} N_2 \\ N_3 \end{bmatrix}}_{V_3} \underbrace{ \begin{bmatrix} N_2 \\$

Fig. Q.4 Three winding Transformer

- (b) A 300 kV transmission line has the following line constants: $A = 0.65 \angle 3^\circ$, $B = 300 \angle 77^\circ$
 - i. Determine the power at unity power factor that can be received if the voltage profile at each end is to be maintained at 300 kV. [6]
 - ii. What type and rating of compensation equipment would be required if the load is 200 MW at unity power factor with the same voltage profile as in part (i). [6]
 - iii. With the load as in part (ii), what should be the receiving-end voltage if the compensation equipment is not installed? [3]

Question 5 (25 Marks)

- (a) Show that the ratio of ac line loss to the corresponding dc loss is $\frac{4}{3}$ assuming equal power transfer and equal peak voltages for both options and unity power factor for ac case. [10]
- (b) In the power system network shown in Fig. Q.5

Fig. Q.5 Two Bus Power System

- (i) Using Gauss-Seidel method, determine V_2 after two iterations. [5]
- (ii) If after several iterations voltage at bus 2 converges to $V_2 = 0.76 j0.2$ determine S_1 and the real and reactive power loss in the line. [10]

Page 3 of 4

.

Useful Information

. ,

$$\overline{V}_{i} = \frac{1}{\overline{Y}_{ii}} \left[\frac{P_{i} - jQ_{i}}{\overline{V}_{i}^{*}} - \sum_{\substack{j=1\\\neq i}}^{n} \overline{Y}_{ij} \overline{V}_{j} \right]$$
$$\overline{S}_{i} = P_{i} + jQ_{i} = \overline{V}_{i}\overline{I}_{i}^{*}$$
$$P_{i} = \sum_{j=1}^{n} |V_{i}| |V_{j}| |Y_{ij}| \cos(\theta_{ij} - \delta_{i} + \delta_{j})$$
$$Q_{i} = -\sum_{j=1}^{n} |V_{i}| |V_{j}| |Y_{ij}| \sin(\theta_{ij} - \delta_{i} + \delta_{j})$$
$$\lambda = a_{T} P_{T} + b_{T}$$
$$a_{T} = \left(\sum_{i=1}^{n} \frac{1}{a_{i}}\right)^{-1} \qquad b_{T} = a_{T} \left(\sum_{i=1}^{n} \frac{b_{i}}{a_{i}}\right)$$

.