UNIVERSITY OF SWAZILAND
 SUPPLEMENTARY EXAMINATION
 JULY 2018

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: Power System Analysis and Operation COURSE CODE : EE552

TIME ALLOWED: Three Hours

INSTRUCTIONS:

1. There are five questions in this paper.
2. Answer any four questions. Each question carries $\mathbf{2 5}$ marks.
3. If you think not enough data has been given in any question you may assume any reasonable values.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Question 1 (25 Marks)

The cost characteristic equations of two units in a plant are

$$
\begin{array}{cc}
C_{1}=0.4 P_{1}^{2}+160 P_{1}+600 & E / h \\
C_{2}=0.45 P_{2}^{2}+120 P_{2}+450 & E / h \\
C_{3}=0.6 P_{3}^{2}+140 P_{3}+500 & E / h \\
30 \leq P_{1} \leq 90 \mathrm{MW} & \\
30 \leq P_{2} \leq 100 \mathrm{MW} & \\
30 \leq P_{3} \leq 90 \mathrm{MW} &
\end{array}
$$

Where P_{1} and P_{2} and P_{3} are power outputs in MW.
(a) Find the optimum load allocation between the three units when the total load is 250 MW .
(b) What will be the daily loss if the units are loaded equally?

Question 2 (25 Marks)

(a) Discuss the effect of acceleration factor in the load flow solution algorithm.
(b) What is Jacobian matrix? How the elements of Jacobian matrix are computed in load flow solution?
(c) What are the advantages and disadvantages of Newton-Raphson method?
(d) The per unit reactance diagram of a three bus network shown in Fig Q. 2 has the bus impedance matrix given by

$$
Z_{\text {Bus }}=j\left[\begin{array}{lll}
0.48 & 0.32 & 0.44 \\
0.44 & 0.48 & 0.36 \\
0.36 & 0.36 & 0.57
\end{array}\right]
$$

Fig. Q. 2 Three Bus Network
i. A three-phase fault occurs at bus 3 through a fault impedance of $Z_{f}=0.012$ per unit. Using the bus impedance matrix calculate the fault current, bus voltages, and line currents during fault.
ii. Determine the new bus impedance matrix when breakers \mathbf{A} and \mathbf{B} are opened due to a fault.

Question 3 (25 Marks)

(a) For a fault at a given location, rank the various faults in the order of severity.
(b) Given the positive, negative and zero sequence impedance of a power system as follows $Z_{+}=j 0.5 \quad Z_{\ldots}=j 0.7$ and $Z_{0}=j 0.2$ find the voltages and currents at the fault point for a line-to-line fault through an impedance $Z_{f}=j 0.02 \mathrm{pu}$

Question 4 (25 Marks)

(a) Show that for a three winding transformer shown in Fig. Q.4, $V_{1 p u}=V_{2 p u}$

Fig. Q. 4 Three winding Transformer
(b) A 300 kV transmission line has the following line constants:

$$
A=0.65 \angle 3^{\circ}, B=300 \angle 77^{\circ}
$$

i. Determine the power at unity power factor that can be received if the voltage profile at each end is to be maintained at 300 kV .
ii. What type and rating of compensation equipment would be required if the load is 200 MW at unity power factor with the same voltage profile as in part (i).
iii. With the load as in part (ii), what should be the receiving-end voltage if the compensation equipment is not installed?

Question 5 (25 Marks)

(a) Show that the ratio of ac line loss to the corresponding dc loss is $\frac{4}{3}$ assuming equal power transfer and equal peak voltages for both options and unity power factor for ac case. [10]
(b) In the power system network shown in Fig. Q. 5

Fig. Q. 5 Two Bus Power System
(i) Using Gauss-Seidel method, determine V_{2} after two iterations.
(ii) If after several iterations voltage at bus 2 converges to $V_{2}=0.76-j 0.2$ determine S_{1} and the real and reactive power loss in the line.

Useful Information

$$
\begin{gathered}
\bar{V}_{i}=\frac{1}{\bar{Y}_{i i}}\left[\frac{P_{i}-j Q_{i}}{\bar{V}_{i}^{*}}-\sum_{\substack{j=1 \\
\neq i}}^{n} \bar{Y}_{i j} \bar{V}_{j}\right] \\
\bar{S}_{i}=P_{i}+j Q_{i}=\bar{V}_{i} \bar{I}_{i}^{*} \\
P_{i}=\sum_{j=1}^{n}\left|V_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \\
Q_{i}=-\sum_{j=1}^{n}\left|V_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \sin \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \\
\lambda=a_{T} P_{T}+b_{T} \\
a_{T}=\left(\sum_{i=1}^{n} \frac{1}{a_{i}}\right)^{-1} \quad b_{T}=a_{T}\left(\sum_{i=1}^{n} \frac{b_{i}}{a_{i}}\right)
\end{gathered}
$$

