# UNIVERSITY OF SWAZILAND MAIN EXAMINATION, MAY 2018

### FACULTY OF SCIENCE AND ENGINEERING

## DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

| TITLE OF PAPER:       | BASIC ELECTRONICS |
|-----------------------|-------------------|
| <b>COURSE NUMBER:</b> | EEE222/EE221      |
| TIME ALLOWED:         | THREE HOURS       |

#### **INSTRUCTIONS:**

- 1. There are five questions in this paper. Answer any FOUR questions.
- 2. Each question carries 25 marks.
- 3. Marks for different sections are shown on the right hand margin.
- 4. Show the steps clearly in all your calculations. This is because marks may be awarded for method and understanding, even if a final answer is incorrect.
- 5. If you think not enough data has been given in any questions you may assume reasonable values and state those assumptions.
- 6. A sheet containing useful formulae and other information is attached at the end.

# THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

# THIS PAPER HAS NINE (9) PAGES INCLUDING THIS PAGE

#### QUESTION 1 (25 marks)

| <b>(a)</b> | Thre                                    | e elements:  | Boron,           | Silicon,   | Phosphorus     | have  | 3, 4     | 4 and | 5 | valence | electrons |
|------------|-----------------------------------------|--------------|------------------|------------|----------------|-------|----------|-------|---|---------|-----------|
|            | respe                                   | ctively. Wh  | ich elem         | ent or cor | nbination of e | lemen | ts is:   |       |   |         |           |
|            | (i) used as an extrinsic semiconductor? |              |                  |            |                |       | (1 mark) |       |   |         |           |
|            | (ii)                                    | used as an a | icceptor         | impurity'  | ?              |       |          |       |   |         | (2 mark)  |
|            | (iii)                                   | used as a do | onor imp         | urity?     |                |       |          |       |   |         | (2 mark)  |
|            | (iv)                                    | used to get  | <b>n-type</b> se | emicondu   | ctor?          |       |          |       |   |         | (1 mark)  |
|            | (v)                                     | used to get  | p-type se        | emicondu   | ctor?          |       |          |       |   |         | (1 mark)  |

- (b) A silicon diode has  $I_s = 1 \times 10^{-14}$  A and n = 1
  - (i) What is the voltage across the diode when a current of 30 mA flows in the diode?

(3 marks)

(8 marks)

- What is the voltage across the diode when a current of  $-0.8 \times 10^{-14}$  A flows, i.e. a (ii) (3 marks) reverse current.
- (c) For the circuit in Fig. Q1c find the currents in  $R_1$ ,  $R_2$  and D1



Fig.Q.1c

(**d**) Draw a circuit of a voltage doubler showing where the output voltage is. (4 marks)

#### QUESTION 2 (25 marks)

(a) Using ideal operational amplifiers, design, giving component values, a circuit which implements the following input-output relations:

(i) 
$$v_o = -0.5v_1 + 3.3v_2$$
 (4 marks)

(ii) 
$$v_o = -1.5 \frac{dv_1}{dt}$$
 (5 marks)

(b) A transformer full-wave bridge rectifier is fed from a 230 V, 50 Hz mains supply. The rectifier is connected to a load resistor 500  $\Omega$  in parallel with a smoothing capacitor C. It is required that the average of the voltage at the output be 12 V and that the ripple in the output be no more than 400 mV. Assume that the diodes have a voltage drop of 0.7 V when conducting.

| (i)   | Draw the full circuit of the rectifier.                                   | (2 marks) |
|-------|---------------------------------------------------------------------------|-----------|
| (ii)  | Sketch its output voltage.                                                | (3 marks) |
| (iii) | Determine the rms value of voltage required in the transformer secondary. | (6 marks) |
| (iv)  | Determine the required value C.                                           | (5 marks) |

and the second second

#### QUESTION 3 (25 marks)

(a) A BJT transistor has  $i_B = 25 \ \mu A$  and  $\alpha = 0.985$ . Determine:

| (i)   | its $\beta$ .                 | £ | (2 marks) |
|-------|-------------------------------|---|-----------|
| (ii)  | the collector current $i_C$ . |   | (1 mark)  |
| (iii) | the emitter current $i_E$ .   |   | (2 marks) |

(b) A simple common emitter npn transistor amplifier stage is shown in Fig. Q.3b. The transistor has  $\beta = 85$ .





| (i)   | Determine the collector current.                                                 | (3 marks) |  |  |
|-------|----------------------------------------------------------------------------------|-----------|--|--|
| (ii)  | Determine the mode in which the transistor is operating.                         | (2 marks) |  |  |
| (iii) | What happens if the transistor is replaced with one which has a current gain 20% |           |  |  |
|       | higher?                                                                          | (4 marks) |  |  |
| (iv)  | What happens if the transistor is replaced with one which has a current gain     | 50%       |  |  |
|       | lower?                                                                           | (4 marks) |  |  |
|       |                                                                                  |           |  |  |
|       |                                                                                  |           |  |  |

- (c) (i) List three properties of an ideal opamp. Of what consequence is each of the properties you have listed in the analysis of opamp circuits? (4 marks)
  - (ii) Explain what is meant by the 'virtual zero' principle of opamp circuits. (3 marks)

## QUESTION 4 (25marks)

A common emitter npn transistor amplifier works from a 15 V supply. Determine suitable values of a resistor divider bias circuit with  $R_E$ ,  $R_C$ ,  $R_1$ , and  $R_2$ , so that the quiescent operating point is as stable as possible at  $I_{CQ} = 2$  mA and  $V_{CEQ} \approx V_{CC}/2$  as  $\beta$  of the transistor varies between 300 and 400.

(25 marks)

#### QUESTION 5 (25 marks)

(a) Consider the amplifier circuit shown in Fig.Q5b. You are given that the transistor used has  $\beta = 200$  and  $V_A = \infty$ .





(a) Perform d.c. analysis to find the operating point,  $I_{\rm C}$  and  $V_{\rm CE}$ , of the transistor.

(10 marks)

an the

- (b) Assuming that the capacitors used are very large, perform a.c. analysis to find the gain  $v_o / v_{in}$  of the circuit. (10 marks)
- (c) If the transistor has a finite Early Voltage of  $V_A = 75$  V with the current gain  $\beta$  remaining unchanged, calculate the new gain of the amplifier. (5 marks)

ارتيافين والداف الد

# USEFUL INFORMATION AND FORMULAE

1. E12 Range: 10 12 15 18 22 27 33 39 47 56 68 82

- 2. Diode:  $i_D = I_S \left( e^{\frac{v_D}{nV_T}} 1 \right) \approx I_S e^{\frac{v_D}{nV_T}}$  in forward bias
- 3. Unless otherwise stated, assume that  $V_{BEon} = 0.7 \text{ V}$ ,  $V_{CEsat} = 0.1 \text{ V}$  and  $V_T = 25 \text{ mV}$ .
- 4. Unless otherwise stated, assume that opamps are ideal.