UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE \& ENGINEERING

DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING

DIGITAL SYSTEMS/I

COURSE CODE - EEE323/EE322

MAIN EXAMINATION

DECEMBER 2017

DURATION OF THE EXAMINATION - 3 HOURS

INSTRUCTIONS TO STUDENTS

1. There are SIX questions in this paper.
2. For Students taking EE322, answer QUESTION FIVE and any THREE from the first FOUR questions.
3. For Students taking EEE323, answer QUESTION SIX and any THREE.
4. Each question caries 25 marks.
5. Show all your steps clearly in any calculations/work.
6. Start each new question on a fresh page.
7. Make sure that this exam contains 4 pages including this one.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION ONE (25 marks)

(a) (8 pts) Perform subtraction on the following unsigned binary numbers using 2 's complement of the subtrahend.
(i) $11010-1101$
(ii) 100-110000
(b) (9 pts) Complete the following table of equivalent values.

Decimal	Binary	Octal	Hexadecimal
31.25			
			3A.D
	110.011		

(c) (8 pts) Represent decimal 5137 in
(i) BCD
(ii) Excess-3 code
(iii) 2421 code
(iv) 6311 code

QUESTION TWO (25 marks)

a) (8 pts) Express the following functions in a sum of minterms and a product of maxterms.
(i) $\quad F(A, B, C, D)=\left(C D+B^{\prime} C+B D^{\prime}\right)(B+D)$
(ii) $\quad F(x, y, z)=\left(x^{\prime}+y\right)\left(y^{\prime}+z\right)$
b) (8 pts) Simplify the following. Boolean functions using the don't-care conditions d, in
(1) sum of products and (2) product of sums:
(i) $\quad F=A^{\prime} B^{\prime} D^{\prime}+A^{\prime} C D+A^{\prime} B C$
$d=A^{\prime} B C^{\prime} D+A C D+A B^{\prime} D^{\prime}$
(ii) $F=B^{\prime} C^{\prime} D^{\prime}+B C D^{\prime}+A B C^{\prime} D$
$d=B^{\prime} C D^{\prime}+A^{\prime} B C^{\prime} D$
c) (9 pts) With the use of k -map, find the simplest form in sum of products of the function $F=f g$, where f and g are given by:

$$
\begin{aligned}
& f=w x y^{\prime}+y^{\prime} z+w^{\prime} y z^{\prime}+x^{\prime} y z^{\prime} \\
& g=\left(w+x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right)
\end{aligned}
$$

QUESTION THREE (25 marks)

a) (7 pts) Implement the following Boolean function with a multiplexer: $F(A, B, C, D)=\sum(0,1,3,4,12,13,15)$
b) (7 pts) Draw a NAND logic diagram that implements the complement of the following function:

$$
F(A, B, C, D)=\Sigma(0,1,2,3,6,10,11,14)
$$

c) $(4 \mathrm{pts})$ Determine the maxterm expansion for $F=x y+x^{\prime} z$.
d) (7 pts) Implement the following Boolean function F, together with the don't-care conditions d, using no more than two NOR gates:

$$
\begin{aligned}
& F(A, B, C, D)=\sum(2,4,6,10,12) \\
& d(A, B, C, D)=\sum(0,8,9,13)
\end{aligned}
$$

Assume that both the normal and complement inputs are available.

QUESTION FOUR (25 marks)

(a) (5 pts) Design a half-subtractor circuit with inputs x and y and outputs D and B. The circuit subtracts the bits $x-y$ and places the difference in D and the borrow in B.
(b) (10 pts) Design a full-subtractor circuit with three inputs x, y, z and two outputs D and B. The circuit subtracts $x-y-z$, where z is the input borrow, B is the output borrow, and D is the difference.
(c) (10 pts.) The majority circuit is a combinational circuit whose output is equal to 1 if the input variables have more 1 's than 0 's. The output is 0 otherwise. Design a 3 input majority circuit using NAND gates.

QUESTION FIVE (25 marks)

(a) (10 pts.) Design a counter with T flip-flops that goes through the following binary repeated sequence: $0,1,3,7,6,4$.
(b) (15 pts) A sequential circuit has two JK flip-flops A and B. two inputs x and y, and one output z . The flip-flop input equations and circuit output equation are:

$$
\begin{array}{ll}
J_{A}=B x+B^{\prime} y^{\prime} & K_{A}=B^{\prime} x y^{\prime} \\
J_{B}=A^{\prime} x & K_{B}=A+x y^{\prime} \\
Z=A x y+B x^{\prime} y^{\prime} &
\end{array}
$$

(i) Tabulate the state table.
(ii) Derive the state equations for A and B .

QUESTION SIX (25 marks)

Complete the design for the state machine described in the state diagram below.

(i) Write out the state table. Assign states using a simple binary order ($\mathrm{S} 0=\mathrm{AB}=00$), Then write out the transition table.
(ii) Write out the flip-flop input excitation table assuming JK-flip flops are used.
(iii)Sketch the circuit diagram.
(iv)Is this Moore or Mealy Machine?

