UNIVERSITY OF SWAZILAND
SUPPLEMENTERY EXAMINATION, JULY 2018

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

```
TITLE OF PAPER: INTRODUCTION TO PROGRAMMABLE ARRAYS AND MICROCONTROLLERS
COURSE CODE: EEE324
TIME ALLOWED: THREE HOURS
```


INSTRUCTIONS:

1. There are four questions in this paper. Answer all FOUR questions. Each question carries 25 marks.
2. If you think not enough data has been given in any question, you may assume any reasonable values stating your assumptions in each case.
3. You may find some useful data at the end of the paper.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

QUESTION ONE (25 marks)

(a) Draw a circuit of a single bit RAM cell using a latch and basic gates.
(b) Show with the aid of a diagram with enough details, how you are going to implement a $2 \mathrm{~K} \times 8$ RAM memory using $1 \mathrm{~K} \times 8$ RAM chips.

Assume that the $1 \mathrm{~K} \times 8$ RAM chips have address, data input, data output (3-state), enable and R / \bar{W} lines.
(7 marks)
(c) Implement the following logic functions using a PLA with four product terms.

$$
\begin{aligned}
& A(x, y, z)=\Sigma(1,3,4,6) \\
& B(x, y, z)=\Sigma(0,2,5,6)
\end{aligned}
$$

Provide the programming table and draw the connection map. Show the steps of your derivation.

Give the specification for the minimum size of the PLA required.

QUESTION TWO (25 marks)

(a) Write the machine codes (op-codes) of the following for 16F84A.

```
subwf PortA,w
btfss intcon,TOIF
sublw . }15
```

(5 marks)
(b) A signal of pulses is applied to the PortA(0) of a 16F84A. Draw the section of a flowchart to show, how to determine the width of the pulses in $\mu \mathrm{s}$ using TMR0. Assume that the external clock is 16 MHz . Show the configurations of the relevant registers with supportive calculations.
(10marks)
(c) A serial device supporting SPI has a maximum data rate of 200 KHz . The device is connected using SPI with a 16 F 877 running on a 3 MHz external oscillator.
(i) Show the settings of the SSPCON and SSPSTAT registers. You may assume low idle state of clock, data sampling at the middle of the clock period and data transfers are on the rising edge of the clock.

$$
\text { (} 6 \text { marks) }
$$

(ii) Outline briefly what is to be done and observe when transferring data between the two devices in (i) above.

QUESTION THREE (25 marks)

A microcontroller 16 F 84 A running with a 8.19 MHz crystal is considered for the following.
(a) State the steps the processor core performs when interrupted by an interrupting source.

$$
\text { (} 5 \text { marks) }
$$

(b) In a program, the only interrupting source is the timer. Show the contents of the INTCON register just after such an interrupt.
(3 marks)
(c) A program needs to generate an interrupt in every 1 ms . Show the settings required in the relevant registers to implement this with justification.
(d) At each interrupt generated by the timer, PortA(0) must be high for three instruction cycle periods and then must become low.
(i) Draw a flow chart for the interrupt service routine (ISR).
(ii) State the important points generally to be followed in a ISR.

QUESTION FOUR (25 marks)

The ADC module of a 16F877 is used to drive two LEDs according to the level of an input analog voltage. The analog input signal is connected to PortA(0). A green LED and a red LED are connected to PortA(1) and PortA(2) respectively. The LEDs will light as,

Input Voltage v_{i}	Green	Red
$v_{i} \leq 2.0 \mathrm{~V}$	off	off
$2.0 \mathrm{~V}<v_{i} \leq 3.5 \mathrm{~V}$	on	off
$v_{i}>3.5 \mathrm{~V}$	off	on

You may assume that,
$F_{\text {osc }}=6 \mathrm{MHz} \quad V_{\text {ref }}=$ internal \quad resolution used $=8 \mathrm{bits}$
(a) Draw a flowchart of a subroutine with enough details which will accomplish this task.

> (11 marks)
(b) Give the initial configuration of the relevant registers for this operation.
(9 marks)
(c) If the input analog voltage is 3 V , write the contents of ADRESH and ADRESL registers just after a conversion.

PIC 16F84A

File Address F			fie Address
OOh	Indirect addr ${ }^{\text {(1) }}$	Indirect addr ${ }^{(1)}$	80n
017	TMK0	OPTION_REG	816
02 h	PCL	PCL	82h
03n	STATUS	STATUS	83n
04 h	FSR	FSR	64h
$05 n$	PORTA -	FRISA	85n
06n	PORTB	TRISE	86n
07 H	$\text { W3x } 5$		87h
08h	EEDATA	EECON1	88h
09n	EEADR	EECON2 ${ }^{11}$	89h
OAh	PCLATH	PCAATH	BAh
08 n	INTCON	INTCON	BEh
0 Ch			BCh
	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0	
4Fh			CFH
507			Don

STATUS REGISTER (ADDRESS 03h, 83h)

| $\mathrm{RN}-0$ | $\mathrm{RN}-0$ | $\mathrm{R} W-0$ | $\mathrm{R}-1$ | $\mathrm{R}-1$ | $\mathrm{RW}-\mathrm{x}$ | $\mathrm{R} N-x$ | $\mathrm{RN}-\mathrm{x}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IRP | RP 1 | RPO | $\overline{\mathrm{TO}}$ | PD | Z | DC | C |
| bit 7 | | | | | | | |

Unimplemented: Maintain as ' 0 '
RPO: Register Bank Select bits (used for direct addressing)
$01=$ Bank 1 ($80 \mathrm{~h}-\mathrm{FFh}$)
$00=$ Bank 0 (00h - 7Fh)
TO: Time-out bit
$1=$ After power-up, CLRWDT instruction, or SLEEP instruction
$0=$ A WDT time-out occurred
$\overline{\mathrm{PD}}$ Power-down bit
1 = After power-up or by the curwor instruction
$0=$ By execution of the sLeEp instruction
Z. Zero bit
$1=$ The result of an arithmetic or logic operation is zero
$0=$ The resull of an arithmetic or logic operation is not zero
DC: Digit carry/borrow bit (ADDWE, ADDLW, SUBLW, SUBWE instructions) (for borrow, the polarity is reversed)
$1=$ A carry-out from the 4 th low order bit of the result occurred
$0=$ No carry-out from the 4 th low order bit of the result
C: Carryforrow bit (ADDWE, ADDLF, SUBLF, SUBWF instructions) (for bormow, the polarity is reversed)
$1=A$ carry-out from the Most Significant bit of the result occurred
$0=$ No carry-out from the Most Significant bit of the result occurred
Note: A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLE) instructions, this bit is loaded with either the high or low order bit of the source register.

PIC 16F84A

OPTION REGISTER (ADDRESS 81h)

RNW-1	RN-1						
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7					bit 0		

RBPU: PORTB Pul-up Enable bit
$1=$ PORTB pullups are disabled
$0=$ PORTE pull-ups are enabled by individual port latch values
INTEDG: Interrupt Edje Seleci bit
$1=$ interrupt on rising edge of RBOINT pin
$0=$ Interrupt on falling edge of RBOINT pin
TOCS: TMRO Clock Source Select bit
$1=$ Fransition on RA4/TOCKI pin
$0=$ Internal instruction cycle clock (CLKOUT)
TOSE: TMRO Source Edge Select bit
$1=$ Increment on high-to-tow transition on RA4/TOCKI pin
$0=$ increment on low-to-high transition on RA4/TOCK1 pin
PSA: Prescaler Assignment bit
$1=$ Prescaler is assigned to the WDT
$0=$ Prescaler is assigned to the Timero module
PS2:PS0: Prescaler Rate Select bits
Bit Value TMRO Rate WDT Rate

000	$1: 2$	$1: 1$
001	$1: 4$	$1: 2$
010	$1: 8$	$1: 4$
011	$1: 16$	$1: 8$
100	$1: 32$	$1: 16$
101	$1: 04$	$1: 32$
110	$1: 128$	$1: 64$
111	$1: 256$	$1: 120$

INTCON REGISTER (ADDRESS 0Bh 8 BBh)

| RN-0 | RN-0 | RN-0 | RNW-0 | RN-0 | RN-0 | RN-0 | RN-x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GIE | EEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF |
| bit 7 | | | | | | | bit 0 |

GIE: Global Interrupt Enable bit
1 = Enables all unmasked interrupts
$0=$ Disables all interrupts
EEIE: EE Write Complete Interupt Enable bit
$1=$ Enables the EE Write Complete interrupts
$0=$ Disables the EE Write Complete interrupt
TOIE: TMRO Overflow Interrupt Enable bit
I = Enables the TMRO interrupt
$0=$ Disables the TMRO interrupt
INTE: RBOANT External Interrupt Enable bit
$1=$ Enables the RBOIINT extemal interrupt
$0=$ Disables the RBO/INT external interrupt
RBIE: RB Port Change Interrupt Enable bit
I = Enables the RB port change interrupt
$0=$ Disables the RB port change interrupt
ToIF: TMR0 Overflow Intermupt Flag bil
$I=$ TMR0 register has overflowed (must be cleared in software)
$0=$ TMR0 register did not overflow
INTF: REOINT Extemal Interrupt Flag bit
1 = The RBOINT external interupt occurred (must be cleared in software)
$0=$ The RBOINT external interrupt did not occur
RBIF: RB Port Change Interrupt Fag bit
1 = At least one of the RB7:R84 pins changed state (must be cleared in sofware)
$0=$ None of the RB7:RB4 pins have changed state

16F84A and 16F877

Mnemonic. Operands		Description	Cycles	14-Eit Opcode				Status Affected	Notes	
		MSb				Lsb				
BYTE-ORIENTED FILE REGISTER OPERATIONS										
ADDWF	I, d		Add W and f	1	00	0111	diff	ffif	C, DC, Z	1,2
ANDWF	f. d	ANO W with f	1	00	0101	dref	Efif	2	1,2	
CLRF	1	Clear 1	1	00	0001	leff	1ffit	Z	2	
CLRW	-	Clear W	1	00	0001	0xoxx	xxxox	z		
COMF	I,d	Complement 1	1	00	1001	dfff	ffif	2	1.2	
DECF	f, d	Decrement I	1.	00	0011	dfif	frit	Z	1,2	
DECFSZ	I, d	Decrement I, Skip if 0	1 (2)	00	1011	dift	ttif		1,2,3	
INCF	1.d	Increment f	1	00	1010	dfri	crif	z	1,2	
INCFSZ	f, d	Increment t, Skip if 0	1 (2)	00	1111	attr	titit		1,2,3	
10RWF	f, d	Inclustive OR W with f	1	00	0100	atti	ffif	Z	1.2	
MOVF	$\mathrm{f}_{*} \mathrm{~d}$	Move If	1	00	1000	deff	EETI	Z	1.2	
MOVWF	1	Move W to f	1	00	0000	1ete	ffft			
NOP	-	No Operation	1	00	0000	0xxa	0000			
RLF	1, d	Rotate Lell f through Carry	1	00	1101	diff	Efif	C	1,2	
RRF	I, d	Rotate Right 1 through Carry	1	00	1100	difi	frif	C	1.2	
SUBWF	f, d	Subtract W from ${ }^{\text {t }}$	1	00	0010	dfft	EtEf	c.oc, 2	1,2	
SWAPF	1,0	Swap nibbles in i	1	00	1110	deti	1Exf		1,2	
XORWF	I, d	Exclusive OR W with 1	1	00	0110	afte	trif	Z	1,2	
BIT-ORIENTED FILE REGISTER OPERATIONS										
BCF	1, b	Bh Clear 1	1	01	00 bb	bitif	rerf		1.2	
BSF	I, b	Bit Self	1	01	010b	bref	fert		1,2	
BTFSC	1.0	Bit Test 1, Skip if Clear	1 (2)	01	10 bb	bife	trit		3	
BTFSS	1, 0	Bit Test 1. Skip if Set	1 (2)	01	11 bb	beft	crit		3	
LITERAL AND CONTROL OPERATIONS										
ADOLW	k	Add Itteral and W	1	11	111x	kkik	kkek	c,oc,z		
ANDLW	k	AND literal with W	1	11	1001	kkkr	kkak	Z		
CALL	k	Call subrouthe	2	10	okkk	kikk	kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TOPO		
GOTO	k	Go to address	2	10	1 kkz	kkkk	kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkiks	kkkk	z		
MOVLW	k	Move literal to W	1	11	00x:	kkkk	koke			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal In W	2	11	01x0x	kkkk	kuks			
RETURN	-	Retum from Subroutine	2	00	0000	0000	1000			
SLEEP	-	Go Into slandby mode	1	00	0000	0110	0011	$\overline{\text { TO, PD }}$		
SUBLW	k	Subtract W from literal	1	11	110x	krkk	kkkek	C.OC, z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kraxk	z		

Note 1: When an vo register is modifed as a function of thell (e.g., move porta, 1), the value used will be that value present on the pins themselves. For example, If the data latch is '1' tor a pin configured as input and is dfiven low by an extemal device, the data will be witten back with a '0'.
2: If his instruction is executed on the TMRO register (and, where applicabte, $d=1$), the prescaler will be cleared if assigned to the Timero Module.
3: If Program Counter (PC) is modified or a conditional lest is true, the instruction requires two cycles. The second cycle is executed as a nop.

PIC 16F877

Pin Diagram

PDIP	
MCLRMPP $\rightarrow-\square 1$	C $40 \square \rightarrow \mathrm{RG} 7 \mathrm{PGG}$
RAOUANO $-\square 2$	$39 \square \longrightarrow \mathrm{RBGFRGC}$
RAVANT $\longrightarrow \square^{-}$	$38 \square \rightarrow$ RB5
RAIJAN2MREE- -4	$37 \square \rightarrow$ RB4
RAXAM3NREE* - $\square \mathrm{S}$	$36 \square \longrightarrow$ RB3PGM
RAATTOCKI $\rightarrow \square 6$	$35 \square \longrightarrow \mathrm{RB2}$
RASJANASS -47	+ 34口
REOFDANS - - ${ }^{\text {a }}$	$\stackrel{33}{\sim} \longrightarrow \longrightarrow$ RBOINT
RE1MTIANG - - 9	$\stackrel{\infty}{\sim} 32 \square+$ Voo
REICSIANT $\longrightarrow-10$	F $31 \square-$ vss
$\mathrm{Voo} \rightarrow \square^{11}$	\% $30 \square \longrightarrow$ RDTPSSP7
Vss $\longrightarrow-12$	\% 29] R RDSPSPG
OSCHCLKIN $\longrightarrow-13$	$5 \quad 28 \square \longrightarrow$ RDSPSPS
OSC2CLKOUT + - 14	$\frac{27}{\square} \quad 2 \rightarrow$ RO4PSP4
RCOMT10SOTT1CKI - - 15	- $26 \square \longrightarrow$ RC7IRXIOT
RC1TT1OSUCCP2 $\rightarrow-\square 16$	$25 \square \longrightarrow$ ROATTXICK
$\mathrm{RC3OCP1} \longrightarrow \square 17$	$24 \square \longrightarrow$ RCSSDO
RC3ISCKSCL - - 18	$23 \square-\mathrm{RC4}$ [SDISDA
RCOPPSP0 $-\square 19$	$22 \square \longrightarrow$ RCOMPSP3
FD1PPSP1 \rightarrow - 20	$21 \square \longrightarrow \mathrm{RDOPSP} 2$

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

RW-0	RN-0	R-0	R-0	R-0	R-0		R-0
SMP	CKE	D/A	P	S	$\mathrm{R} \overline{\mathrm{W}}$	UA	BF
bil 7							

SMP: Sample bit
SPI Master mode:
1 = input data sampled at end of data output time
$0=$ input data sampled at middle of data oufput time
SPI Slave mode:
SMP must be cleared when SPI is used in slave mode
In $I^{2} C$ Master or Slave mode:
1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)
$0=$ Slew rate control enabled for high speed mode (400 kHz)
CKE: SPI Clock Edge Select (Figure 9-2, Figure 9-3 and Figure 9-4)
SPI mode:
For CKP = 0
1 = Data transmitted on rising edge of SCK
$0=$ Data transmitted on falling edge of SCK
For CKP = 1
1 = Data transmitted on falling edge of SCK
$0=$ Data transmitted on rising edge of SCK
In 1^{2} C Master or Slave mode:
$1=$ Input levels conform to SMBus spec
$0=$ input levels conform to $1^{2} \mathrm{C}$ specs
DIA: DatalAddress bit ($i^{2} \mathrm{C}$ mode only)
1 = indicates that the last byte recelved or transmitted was data
$0=$ Indicates that the last byte received or transmitted was adgress
P: STOP bit
$\left(1^{2} \mathrm{C}\right.$ mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)
1 = Indicates that a STOP bit has been detected last (this bit is 0 ' on RESET)
$0=$ STOP bit was not detected last
S : START bit
(${ }^{2} \mathrm{C}$ mode only. This bit is cleared when the MSSP module is disabted, SSPEN is cleared.)
$1=$ Indicates that a START bit has been detected last (this bit is ' 0 ' on RESET)
$0=$ START bit was not detecteó last
RWW: Read/Write bit Information ($I^{2} \mathrm{C}$ mode oniy)
This bit holds the RNW bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit or not ACK bil.
$\ln 1^{2} \mathrm{C}$ Slave mode:
1 = Read
$0=$ Write
In $1^{2} \mathrm{C}$ Master mode:
$1=$ Transmit is in progress
$0=$ Transmit is not in progress
Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.
UA: Update Address (10-bit $1^{2} \mathrm{C}$ mode only)
$1=$ Indicates that the user needs to update the address in the SSPADD register
$a=$ Address does not need to be updated
BF: Buffer Fui Status bit
Receive (SPI and $t^{2} \mathrm{C}$ modes):
$1=$ Receive complete, SSPBUF is full
$0=$ Receive not complete, SSPBUF is empty
Transmit (1^{2} e mode only):
1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full
$0=$ Data transmit complete (does not include the $\overline{A C K}$ and STOP bits), SSPBUF is empty

PIC 16F877

SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

| RNW-0 | RN-O | RN-0 | RN-0 | RN-0 | RN-0 | RN-0 | RN-O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |

WCOL: Write Collision Delect bit
Master mode:
1 = A wite to SSPBUF was attempted while the 12C conditions were not valid
$0=$ No collision
Slave mode:
$1=$ SSPBUF register is written while still transmitting the previous word (must be cleared in soltware)
$0=$ No collision
SSPOV: Receive Overflow Indicator bit
In SPI mode:
1 = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initated by writing to the SSPBUF register. (Must be cleared in software.)
$0=$ No overtlow
in 1^{2} c mode:
$1=$ A byte is received while the SSPBUF is holding the previcus byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.)
$0=$ No overflow
SSPEN: Synchronous Serial Port Enable bit

in SPI mode

When enabled, these pins must be properly configured as input or output
1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins
$0=$ Disables serial port and configures these pins as IO port pins
In $1^{2} \mathrm{C}$ mode.
When enabled, these pins must be properly configured as input or output
1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins
$0=$ Disables serial port and configures these pins as I/O port pins
CKP: Clock Polarity Select bit
in SPI mode:
$1=$ Ide state for clock is a high level
$0=$ Idle state for clock is a fow level
in 1^{2} c Slave mode:
SCK release control
$1=$ Enable ciock
$0=$ Holds clock low (clock stretch). (Used to ensure data setup time.)
In 1^{2} C Master mode:
Unused in this mode
SSPM3:SSPMO: Synchronous Serial Port Mode Select bits
$0000=$ SPI Master mode, clock = Fosc/4
$0001=$ SPI Master mode, clock $=$ Fosc/16
$0010=$ SPI Master mode, clock $=$ Fosc/64
$0011=$ SPI Master mode, clock $=$ TMR2 output/2
$0100=$ SPI Slave mode, clock $=$ SCK pin. SS pin control enabled.
$0101=$ SPI Slave mode, clock $=$ SCK pin. SS pin control disabled. $\overline{S S}$ can be used as IO pin.
$0110=1^{2} \mathrm{C}$ Slave mode, 7 -bit address
$0111=1^{2} \mathrm{C}$ Slave mode, 10 -bit address
$1000=1^{2} \mathrm{C}$ Master mode, clock $=$ Fosc $/\left(4^{*}(\right.$ SSPADD +1$\left.)\right)$
$1011=1^{2} \mathrm{C}$ Firmware Controlled Master mode (slave idie)
$1110=I^{2} \mathrm{C}$ Firmware Controlled Master mode, 7 -bit address with START and STOP bit intermpts enabled $1111=1^{2} \mathrm{C}$ Firmware Controtied Master mode, 10 -bit address with START and STOP bit interrupts enabled 1001, 1010, 1100, 1101 = Reserved

PIC 16F877

PIC16F877/876 REGISTER FILE MAP

PIC 16F877

ADCONO REGISTER (ADDRESS: 1Fh)

RN-0	RW-0	RN-0	RN-0	RN-0	RN-0	U-0	RN-0
ADCS1	ADCS0	CHS2	CHS 1	CHSO	GOIDONE	Bit 0	
bit 7							

ADCS1:ADCS0: A/D Conversion Clock Select bits
$00=$ Fosch 2
$01=\mathrm{Fosc} / 8$
$10=$ Fosc/32
$11=$ FRC (clock derived from the internal A/D module RC oscillator)
CHS2:CHSO: Analog Channel Select bits
$000=$ channel 0_{3} (RAD/ANO)
001 = channel 1, (RA1/AN1)
$010=$ channel 2, (RA2/AN2)
$011=$ channel 3, (RA3IAN3)
$100=$ channel 4, (RA5/AN4)
$101=$ channel $5,(\text { REO/AN5 })^{(1)}$
$110=$ channel 6, (REI/AN6) ${ }^{(1)}$
111 = channel 7, (RE2IAN7) ${ }^{(1)}$
GOIDONE: ADD Conversion Status bit
If $A D O N=1:$
$1=$ A/D conversion in progress (setting this bit starts the A/D conversion)
$0=A / D$ conversion not in progress (this bit is automatically cleared by hardware when the AD conversion is complete)
Unimplemented: Read as ' 0 '
ADON: A/D On bit
1 = AD converter module is operating
$0=\mathrm{A} / \mathrm{D}$ converter module is shut-off and consumes no operating current

PIC 16F877

ADCON1 REGISTER (ADDRESS 9Fh)

U-0 \quad U-0 \quad RN-0 \quad U-0
ADFM
bit 7

ADFM: AD Result Format Select bit
$1=$ Right justified. 6 Most Significant bits of ADRESH are read as ' 0 '.
$0=$ Left justified. 6 Least Significant bits of ADRESL are read as ' 0 '.
Unimplemented: Read as '0'
PCFG3:PCFG0: AD Port Configuration Control bits:

PCFG3: PCFGO	$\begin{aligned} & \text { AN7 } 7^{(1)} \\ & \text { RE2 } \end{aligned}$	ANG ${ }^{(1)}$ RE1	$\begin{gathered} \text { AN5 } 5^{(1)} \\ \text { REO } \end{gathered}$	AN4 RA5	$\begin{aligned} & \text { AN3 } \\ & \text { RA3 } \end{aligned}$	AN2 RA2	AN1 RA1	$\begin{aligned} & \text { ANO } \\ & \text { RAO } \end{aligned}$	Vreft	Vref-	Chan/ Refs
0000	A	A	A	A	A	A	A	A	VDD	Vss	8/0
0001	A	A	A	A	VREF +	A	A	A	RA3	Vss	71
0010	0	D	D	A	A	A	A	A	VDD	Vss	510
0011	0	D	D	A	Vref +	A	A	A	RA3	Vss	4/1
0100	D	D	D	D	A	D	A	A	VDo	Vss	310
0101	D	D	D	D	Vreft	D	A	A	RA3	Vss	$2 / 1$
011x	D	D	D	D	D	D	D	D	VDD	Vss	010
1000	A	A	A	A	VRef+	Vref-	A	A	RA3	RA2	612
1001	0	0	A	A	A	A	A	A	VDD	Vss	610
1010	D	\bigcirc	A	A	Vreft	A	A	A	RA3	Vss	5/1
1011	D	D	A	A	Vreft	Vref-	A	A	RA3	RA2	$4 / 2$
1100	D	D	D	A	VREF+	Vref-	A	A	RA3	RA2	$3 / 2$
1101	D	D	D	D	Vreft	Vref-	A	A	RA3	RA2	$2 / 2$
1110	D	D	D	D	D	D	D	A	VDD	Vss	110
1111	D	D	D	D	Vreft	Vref-	D	A	RA3	RA2	$1 / 2$

$A=$ Analog input $\quad \mathrm{O}=$ Digitaillo

Note 1: These channels are not available on PIC16F873/876 devices.
2: This column indicaies the number of analog channels available as AD inputs and the number of analog channels used as voltage reference inputs.

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as 0^{\prime}
$-\mathrm{n}=$ Value at POR	$\prime 1=$ Bit is set	$\prime 0$ ' $=$ Bit is cleared $\quad \mathrm{x}=\mathrm{Bit}$ is unknown

PIC 16F877

FIGURE 10-1: USART TRANSMIT BLOCK DIAGRAM

FIGURE 10-4: USART RECEIVE BLOCK DIAGRAM

