UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE
Department of Electrical and Electronic engineering

July 2018

SUPPLEMENTARY EXAMINATION

Title of the paper:

Fundamentals of Power Machines

Course Code: EEE352
Time allowed: Three Hours

Instructions:

1. Answer all questions in the following pages.
2. The answer must be written in the space provided in the question book; those in elsewhere considered invalid. Use the answer book as a scratch pad. Both question and answer book must be handed-in and marked with name and ID.
3. This paper has 6 pages, including this page.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR Q1: (20 pts) The UniSwa distribution system structure is shown below.

Fill in the blank boxes the proper data indicated near the box. (pts assigned in the figure)

Device Name (2×2)

Q2: (20 pts) Draw a per-unit reactance diagram for the balanced 3-Ф system shown in Fig. Q2-1. Choose 80 MVA and 66 KV at the transmission line as the system base. (8 pts for structure; -2 pts for each component mistake until a total 12)

Q3: (20 pts) 3 impedances, $\mathbf{Z}_{\mathrm{ab}}=3<0^{\circ}, \mathbf{Z}_{\mathrm{bc}}=4<60^{\circ}$, and \mathbf{Z}_{ca} $=5<90^{\circ} \Omega$, are connected in Δ. This Δ-connected load is supplied by a 60 Hz , balanced positive sequence Y -connected 3-phase source, $\mathbf{E}_{\mathrm{a}}=220 \angle 0 \mathrm{~V}$,. Determine (i)(10 pts). the total line current; (ii)(10 pts). the line current of each phase.

Fig. Q3-1

Q4(20 pts):

(i)(4 pts) Given a $300 \mathrm{rpm}, 60 \mathrm{~Hz}$, and $3-\Phi$ synchronous machine, find how many pairs of poles per phase?
(ii)(4 pts) Describe the prominent differences between a synchronous generator and a synchronous motor.
(iii)(12 pts) (a). Draw a complete transformer equivalent circuit. (b). Maximize or minimize which components to make a CT. (c). Maximize or minimize which components to make a PT.

Q5(20 pts): A rotating magnetic field, shown in Fig. Q5-1 has two coils Ch and Cv ; each is energized respectively by the current:

$$
i_{h}=I \cdot \sin \cdot \omega_{e} t \quad i_{v}=I \cdot \cos \cdot \omega_{e} t
$$

such that i_{h} produces a field Bh and i_{v} a field $B v$. where ω_{e} is electric frequency. (i)(15 pts). Prove the resultant magnetic field will rotate at a mechanical angular speed $\omega_{m}= \pm \omega_{e}$. (ii)(5 pts) Find out the
 rotating is CCW or CW .

