UNIVERISTY OF SWAZILAND

DEPARTMENT OF GEOGRAPHY, ENVIRONMENTAL SCIENCE AND PLANNING FINAL EXAMINATION, DECEMBER 2012

B.A., BASS, B. Ed. (FT/PT)

TITLE OF PAPER:

BIOGEOGRAPHY

COURSE NUMBER:

GEP 312

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

1. ANSWER THREE QUESTIONS

2. QUESTION 1 IS COMPULSORY

3. ILLUSTRATE YOUR ANSWERS WITH

EXAMPLES AND CLEARLY DRAWN DIAGRAMS

WHERE APPROPRIATE

ALLOCATION OF MARKS:

QUESTION 1 (COMPULSORY) CARRIES

40 MARKS WHILE THE REST CARRY 30

MARKS EACH

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR

GEP 312: BIOGEOGRAPHY – DECEMBER 2012

SECTION A: COMPULSORY

QUESTION 1

a) Define the following terms:

i.	Ecology	(2 marks)
ii.	Speciation	(2 marks)
iii.	Taxonomy	(2 marks)
iv.	Hygrochasy	(2 marks)
v.	Physiognomy	(2 marks)

- b) Given the hypothetical data in Table 1 calculate the following:
 - i. Co-efficient of association between Combretum molle and the following species: Syzygium cordatum, Vangueria infausta, Adina, and Ilex mitis. (12 marks)
 - ii. Species richness in the four quadrats. (8 marks)
- c) Explain how you would prepare samples for testing soil pH.

(10 marks)

(40 Marks)

Table 1: Number of individuals for each species within four quadrats in a hypothetical area

Name of species	Number of individuals			
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4
1. Imbondvo lemnyama (Combretum molle)	18	29	13	28
2. Imbondvo lemhlophe (Combretum zeyheri)	33	36	15	8
3. Incithamuzi (Ilex mitis)	33	44	0 .	36
4. Umntulu (Vangueria infausta)	4	13	11	14
5. Sihubhulu (Bridelia Micrantha)	13	0	0	25
6. Umbhungela	8	8	15	32
7. Umncozi (Syzgium cordatum)	30	22	18	0
8. Umhlume (Adina)	25	9	0	0
9. Umkhamamamsi wemfula (Tabernaemontana elegans)	12	4	21	9
10. Umhonono wemfula (Terminalia sambesiaca)	0	9	19	24
11. Umkhiwa wemfula (Ficus capensis)	0	13	0	8

Source: Hypothetical

SECTION B: ANSWER ANY TWO QUESTIONS

QUESTION 2

- a) Explain why biogeographical studies tend to pay special attention to the study of plants rather than animals. (15 marks)
- b) Explain how you will measure the biomass of grass found within the fence of UNISWA Weather Station. (15 marks)

 (30 Marks)

QUESTION 3

Using examples, discuss the effects of climate change on various levels of biological diversity.

(30 Marks)

QUESTION 4

Using examples, discuss the applications of biogeography.

(30 Marks)

QUESTION 5

- a) Analyse the following themes used to explain the development of biogeographical studies.
 - i. Distribution analysis

(10 marks)

ii. Historical approach

(10 marks)

b) With reference to a grazing food chain, explain the structure and functioning of an ecosystem. (10 marks)

(30 Marks)