UNIVERSITY OF SWAZILAND

DEPARTMENT OF GEORAPHY, ENVIRONMENTAL SCIENCE AND PLANNING

MAIN EXAMINATION: DECEMBER, 2013

B.Sc. I1

TITLE OF PAPER : WATER RESOURCES

COURSE NUMBER : GEP 228

TIME ALLOWED : THREE (3) HOURS

INSTRUCTIONS : ANSWER 2 QUESTIONS FROM EACH SECTION

ILLUSTRATE YOUR ANSWERS WITH

APPROPRIATE DIAGRAMS

MARKS ALLOCATED : ALL QUESTIONS CARRY 25 MARKS.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

ANSWER ANY TWO QUESTIONS (MAIN DEC 2013)

QUESTION 1

SECTION A:

(a) Distinguish between weather and climate. (5 marks)(b) Explain the air masses that influence the weather of southern Africa. (20 marks)

(25 marks)

QUESTION 2

(10 marks) (10 marks)

(b) Determine the climate of Matsapha, Mbabane and Big Bend given the information in Table 1 and Figure 1 and 2. (15 marks)

(25 marks)

QUESTION 3

(a) Explain the main processes by which heat transfer occurs in the earth-atmosphere system.

(10 marks)

(b) Calculate the solar intensity at a place given the following information:

solar constant $l_0 = 1.368 \text{kWm}^{-2}$ and solar beam angle, $\mu = 90^{\circ}$.

(15 marks) (25 marks)

SECTION B: ANSWER ANY TWO QUESTIONS

QUESTION 4

(a) Discuss the role of hydrology in economic development. (10 marks)

(b) Explain one method of estimating the average precipitation of a place and give its advantages over the others. (15 marks)

(25 marks)

QUESTION 5

(a) Describe the importance of hydrological measurements in the sector of water resources.

(10 marks)

(b) Table 2 presents the discharge measurements for a hypothetical river. Draw the rating curve and estimate the discharge of the river when the water level is 5.5m. (15 marks)

(25 marks)

QUESTION 6

(a) Define unit hydrograph.

(5 marks)

(b) Explain the assumptions behind the unit hydrograph theory.

(5 marks)

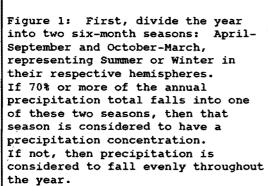
(c) Table 3 presents the ordinates of the total runoff hydrograph for Kizinga River which has a catchment area of 198 km2. Determine the depth of the surface runoff. (15 marks)

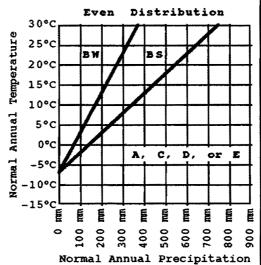
Table 1 Meteorological information for Matsapha, Mbabane and Big Bend

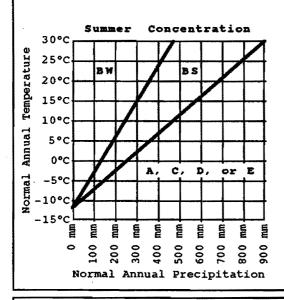
Matsapha	J	F	М	Α	М	j	J	Α	S	0	N	D	Avg.
/T (°C)	24	23	22	20	18	15	16	17	19	20	21	23	
P (mm)	135	118	109	74	24	20	10	22	65	100	142	115	
Mbabane													
T (°C)	20	20	19	17	15	12	12	14	16	18	19	20	
P (mm)	250	214	174	78	35	18	21	29	64	129	180	216	
Big Bend													
T (°C)	27	26	25	23	19	16	16	18	21	23	4	26	
P (mm)	93	75	63	36	22	12	9	11	30	47	78	88	

Table 2

Discharge measurements for a hypothetical river


Gauge height (m)	Discharge (m³/s)				
0	0				
1.25	10.2				
1.6	17.1				
2.8	49.5				
3.5	80.3				
4.25	121.3				
4.7	186.2				
5.0	241.5				


Table 3. Ordinates of the total runoff hydrograph for Kizinga River


Day	Discharge (m³/s)
1	0.48
2	0.55
3	0.60
4	1.48
5	1.13
6	0.78
7	0.68
7.5	0.63

FLOW CHART FOR KÖPPEN'S CLIMATE CLASSIFICATION

FIGURE 1

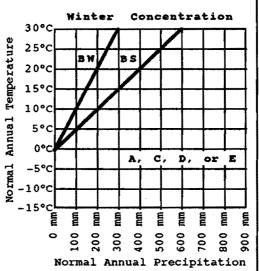
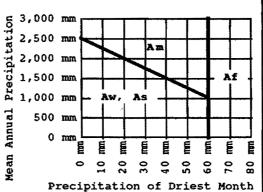
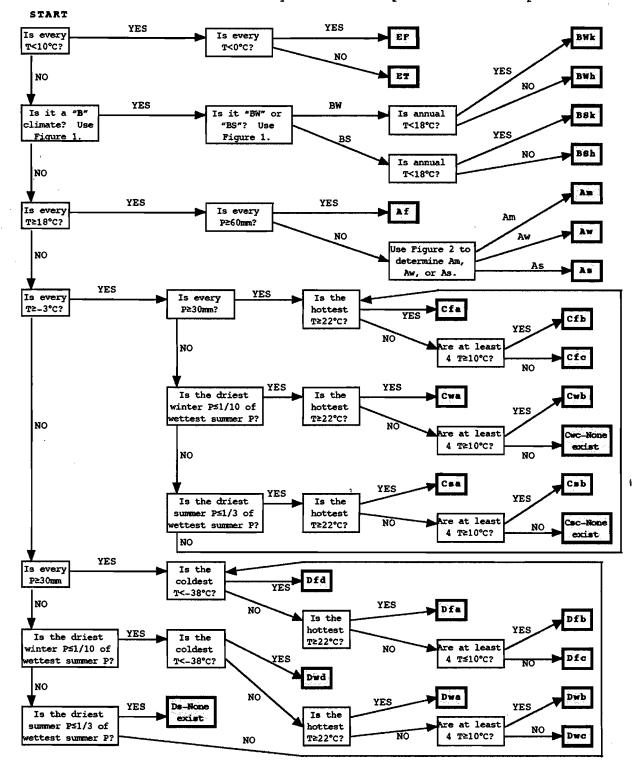



FIGURE 2

Figure 2: First, divide the year into two six-month seasons: April-September and October-March, representing Summer or Winter in their respective hemispheres.


If 70% or more of the annual precipitation total falls into one of these two seasons, then that season is considered to have a precipitation concentration.

If not, then precipitation is considered to fall evenly throughout the year.

FLOW CHART FOR KÖPPEN'S CLIMATE CLASSIFICATION

T and P refer to normal monthly values of Temperature and Precipitation

