UNIVERSITY OF SWAZILAND

DEPARTMENT OF GEOGRAPHY, ENVIRONMENTAL SCIENCE AND PLANNING

SUPPLEMEENTARY EXAMINATION PAPER JULY 2015

B.SC., B.A., BASS and B.ED

TITLE OF PAPER: STATISTICAL GEOGRAPHY

COURSE NUMBER: GEP 223

1.5

TIME ALLOWED: THREE (3) HOURS

INSTRUCTIONS: 1. ANSWER THREE (3) QUESTIONS

2. QUESTION 1 IS COMPULSORY

3. CHOOSE TWO (2) OTHER QUESTIONS FROM SECTION B.

1

4. WHERE APPROPRIATE ILLUSTRATE YOUR

ANSWERS WITH EXAMPLES

ALLOCATION OF MARKS: QUESTION ONE (1) CARRIES 40 MARKS WHILE THE REST CARRY 30 MARKS EACH

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR

GEP 223: STATISTICAL GEOGRAPHY (SUPPLEMENTARY) JULY 2015

SECTION A: COMPULSORY

QUESTION 1

Table 1 shows hypothetical potato yields from different farm sizes of some households in Maliyaduma area.

a) Calculate the Spearman's Rank Correlation coefficient between potato yields and size of the farms. (20 marks)
b) Plot a scatter diagram and a regression line of the distribution of households in relation to their farm sizes and potato yields obtained. Assume that farm size is the independent variable. (10 marks)
c) Test the correlation at 0.05 significance level. (10 marks)

SECTION B: ANSWER ANY TWO QUESTIONS

QUESTION 2

1.2

Table 2 shows hypothetical scores for a sample of students from three (3) different high schools in the Lubombo district. The Null hypothesis (H_0) states that: There is no difference in the scores obtained by the students from the three high schools. The Alternative hypothesis (H_1) states that there is actually a difference in the scores obtained by the students in the three high schools. Apply the Kruskal-Wallis test to establish whether the H_0 can be rejected at 0.01 significance level in favour of H_1 .

(30 Marks)

QUESTION 3

 Identify the main sources of information generally available to a geographer conducting quantitative research.

(10 marks)

b) With reference to the situation in developing countries, discuss the availability and quality of the sources identified in (a) above. (20 marks)

QUESTION 4

λ.

15

. ,

a)	Define the measures of skewness.	(5 marks)
b)	Calculate the skewness coefficient of 4, 5, 5, 6, 6, 7, 7, 8	(20 marks)
c)	Explain the meaning of the skewness measure obtained in (b) above	(5 marks)

(30 Marks)

QUESTION 5

a)	Outline the functions of statistical techniques in Human Geography. (10 marks)				
b)	Explain the main steps involved in the scientific approach to analysing geographical				
	proble	ms.	(12 marks)		
c)	Indica	te instances where you can use the following statistics:			
	<i>(</i>)	Studente t test	(2 montra)		
	(1)	Students t-test	(2 marks)		
	(ii)	Regressional analysis	(2 marks)		
	<i></i>		<i>.</i>		
	(iii)	Pearson Correlation Co-efficient	(2 marks)		
	(iv)	Chi-square test	(2 marks)		
	()	our offere core	(

(30 Marks)

Household No.	Potato yields	Farm size in ha
1.	80	121
2.	29	68
3.	61	49
4.	92	154
5.	01	62
6.	42	62
7.	88	140
8.	23	30
9.	74	8,8
10.	67	67
11.	88	12
12.	19	10
13.	15	28
14.	76	134
15.	87	20
16.	16	90
17.	48	06
18.	10	19
19.	12	51
20.	10	67

Table 1 Distribution of potato yields and farm sizes of some households in Maliyaduma

Source: Hypothetical

. .

1.5

4

Siteki Nazarene	Simunye High	Lomahasha High		
98	81	84		
87	76	89		
99	94	91		
88	77	85		
79	84	88		

,

Table 2 Hypothetical scores for sampled students of three high schools

Source: Hypothetical

 $1 \sim$

, ^r,

5

C9 Critical Values of Spearman's Rank Correlation Coefficient rs

	Significance level (one-tailed)				
	0.03	0.025	0.01	0.005	
Degrees of	Significance level (two-tailed)				
freedom	0.1	0.05	0.02	0.01	
1	1 000				
+ 5	0.900	1 000	1 000		
6	0.829	0.886	0.943	1.000	
7	0.714	0.786	0.893	0.929	
8	0.643	0.738	0.833	0.881	
9	0.600	0.683	0.783	0.833	
10	0.564	0.648	0.745	0.794	
11	0.523	0.623	0.736	0.818	
12	0.497	0.591	0.703	0.780	
13	0.475	0.566	0.673	0.745	
14	0.457	0.545	0.646	0.716	
15	0.441	0.525	0.623	0.689	
10	0.425	0.307	0.001	0.000	
18	0.412	0.490 0.476	0.362 0 564	0.045	
19	0.388	0.462	0 549	0.608	
20	0.377	0.450	0.534	0.591	
21	0.368	0.438	0.521	0.576	
22	0.359	0.428	0.508	0.562	
23	0.351	0.418	0.496	0.549	
24	0.343	0.409	0.485	0.537	
*25	0.336	0.400	0.475	0.526	
26	0.329	0.392	0.465	0.515	
27	0.323	0.385	0.456	0.505	
28	0.317	0.377	0.448	0.496	
29	0.311	0.3/0	0.440	0.48/	
30	0.303	0.304	0.452	0.478	
40	0.262	0.330	0.333	0.442	
45	0.248	0.296	0.375	0.388	
50	0.235	0.280	0.332	0.368	
55	0.224	0.267	0.317	0.351	
60	0.214	0.255	0.303	0.335	
65	0.206	0.245	0.291	0.322	
70	0.198	0.236	0.280	0.310	
75	0.191	0.228	0.271	0 .300	
80	0.185	0.221	0.262	0.290	
85	0.180	0.214	0.254	0.281	
90	0.174	0.208	0.247	0.273	
93	0.1/0	0.202	0.240	0.266	
100	0.102	0.197	0.234	0.239	

TABLES OF CRITICAL VALUES 219

Reject H_0 if calculated value of r_s is greater than the critical value at the chosen significance level (in absolute terms).

For degrees of freedom greater than 30 other critical values can be found from the following relationship:

$$r_s = z\sqrt{1/(n-1)}$$

where r_s is the critical value of r_s , n is the number of individuals in the data set (the degrees of freedom), and z is the appropriate critical value of a standard normal deviate (from Appendix C10). For a two-tailed test at the 0.01 level the appropriate value of z is 2.576, so the critical value of r_s with 72 degrees of freedom is:

$$2.576\sqrt{1/(72-1)} = 2.576\sqrt{0.014}$$
$$= 2.576 \times 0.119$$
$$= 0.306$$

C10 Critical Values of a Standard Normal Deviate z

	Significance level (one-tailed)						
	0.1	0.05	0.Ò1	0.005	0.001		
z	1.282	1.645	2.326	2.576	3.090		
z	-1.282	-1.645	-2.326	-2.576	-3.090		
	Signif	icance le	vel (two	-tailed)			
	0.1	0.05	0.01	0.005	0.001		
z	1.645	1.960	2.576	2.813	3.291		
-z	-1.645	-1.960	-2.576	-2.813	-3.291		

1.5

TABLES OF CRITICAL VALUES

.

٩

			Significance level			
n 1	n ₂	n ₃	0.1	0.05	0.01	0.005
2	1	1				
2	2	1				
2	2	2	4.571	;		
3	1	1				
3	2	1	4.286			
3	2	2	4.500	4.714	5.357	
3	3	1	4.571	5.143		
3	3	2	4.556	5.361		
3	3	3	4.622	5.600	7.200	7.200
4	1	1				
4	2	1	4.500			
4	2	2	4.056	5.208		
4	3	2	4.511	5.444	6.444	
4	3	3	4.709	5.727	6.746	
4	4	1	4.167	4.967	6.667	
4	4	2	4.555	5.455	7.036	
4	4	3	4.546	5.599	7.144	
4	4	4	4.654	5.692	7.654	
2	1	1				
2	2	1	4.200	5.000		
2	2	2	4.373	5.160	6.533	
	3	1	4.018	4.960		
5	5	2	4.651	5.251	6.882	
5	3	3	4.533	5.649	7.079	
5	4	1	3.98/	4.986	6.955	
	4	2	4.541	5.208	7.118	
	4	Э А	4.549	5.031	7.445	
5	4	4	4.019	5.107	7.760	
5	5	2	4.109	5.127	7.309	
5	5	2	4 545	5706	7.542	
5	5	4	4 522	5.700	7.343	
5	5	5	4 560	5.045	7 090	
			000.7	5.760	7.960	
Reject H _o if calculated value of H is greater than or equal to critical value at chosen significance level.						

C6 Critical Values of H for the Kruskal–Wallis Test

1.5

,

ана ж. 4-р