UNIVERSITY OF SWAZILAND

DEPARTMENT OF GEORAPHY, ENVIRONMENTAL SCIENCE AND PLANNING

MAIN EXAMINATION: DECEMBER, 2015

s.

B.Sc. II

TITLE OF PAPER : WATER RESOURCES

COURSE NUMBER : GEP 228

TIME ALLOWED **THREE (3) HOURS** :

INSTRUCTIONS : ANSWER 2 QUESTIONS FROM EACH SECTION **ILLUSTRATE YOUR ANSWERS WITH APPROPRIATE DIAGRAMS**

MARKS ALLOCATED : ALL QUESTIONS CARRY EQUAL MARKS

GEP 228: WATER RESOURCES

(Main, December, 2015)

SECTION A: ANSWER ANY TWO QUESTIONS

QUESTION 1

Use the flow chart in Figure 1 as well as Figures 2 to 3 to determine the climates of the following places using the information that is provided. (25 marks)

1. Manzini (Swaziland)

	J	F	М	A	M	J	J	A	s	0	N	D	
T (°C)	24	23	22	20	18	15	16	17	19	20	21	23	
P(mm)	135	118	10	74	24	20	10	22	65	100	142	115	835

2. Bata (Equatorial Guinea)

	J	F	М	A	М	J	J	A	S	0	N	D	
T (°C)	27	27	27	27	26	24	25	25	26	26	26	27	
P(mm)	24	23	33	34	24	13	3	18	10	34	47	24	287

3. New York (U.S.A)

	J	F	М	А	М	J	J	А	S	0	N	D	
T(°C)	-1	-9	-2	8	15	20	22	21	16	9	-1	-7	
P(mm)	2	23	36	53	89	104	81	81	81	56	33	25	685

. . .

FLOW CHART FOR KÖPPEN'S CLIMATE CLASSIFICATION

If not, then precipitation is

FLOW CHART FOR KÖPPEN'S CLIMATE CLASSIFICATION

T and P refer to normal monthly values of Temperature and Precipitation

QUESTION 2

- (a) Explain why an air mass that is forced up a mountain range cools down. (5 marks)
- (b) An air mass at an elevation of 2550m has a temperature of about 9.5°C. What will be the temperature of this air mass at an elevation of 13750m if it is cooling at the dry adiabatic rate? (15 marks)
- (c) 'The inter-tropical convergence zone is not stationary'. Discuss the validity of this statement. (5 marks)

(25 Marks)

QUESTION 3

		(25 Marks)
	in temperate regions it occurs at mountain summits.	(10 marks)
(b)	Explain why maximum precipitation occurs below mountain summits in	the tropics while
(a)	Explain one theory of precipitation formation.	(15 marks)

SECTION B: ANSWER ANY TWO QUESTIONS

QUESTION 4

	(25 Marks)
(b) Discuss the role of hydrology in social economic development.	(15, marks)
(a) Explain why water is regarded as a renewable resource.	(10 marks)

QUESTION 5

- (a) Explain the importance of measuring and/or estimating evaporation in water resources planning and management.
 (10 marks)
- (b) Estimate the evaporation from a free water surface for the month of January using the

(25 marks)

A

QUESTION 6

(a)	Define a unit hydrograph.	(5 marks)
(b)	Explain the assumptions of the unit hydrography theory.	(10 marks)
(c)	Table 1 below shows the total runoff hydrography and base flow ordi	nates from a rain
	storm that lasted for one day for the Mtilane River. The effective rainfall	l was estimated to
	be 2.9 mm. Derive the one day unit hydrograph.	(10
	marks)	

(25 marks)

Table 1. Total runoff hydrograph and base flow ordinates for the Mtilane River at Lozihta bridge.

Time	Total RO Hyd.	Base flow
(in days)	Ordinates (m ³ /s)	ordinates (m ³ /s)
1	0.48	0.48
2	1.06	0.35
3	2.05	0.28
3.5	3.2	0.23
4	2.05	0.28
5	1.5	0.4
6	1.05	0.55
7	0.84	0.6
7.5	0.65	0.65