UNIVERSITY OF SWAZILAND

DEPARTMENT OF GEORAPHY, ENVIRONMENTAL SCIENCE AND PLANNING

MAIN EXAMINATION:

DECEMBER, 2016

BSc and BSc Ed. II

TITLE OF PAPER : WATER RESOURCES

COURSE NUMBER : GEP232

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

ANSWER TWO QUESTIONS FROM SECTION A

AND TWO QUESTIONS FROM SECTION B

ILLUSTRATE YOUR ANSWERS WITH

APPROPRIATE DIAGRAMS

MARKS ALLOCATED :

QUESTIONS ONE CARRY 25 MARKS EACH

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

SECTION A: ANSWER ANY TWO QUESTIONS

QUESTION 1

- a) Explain why unstable air mass can continue to rise up to near the tropopause. (13 marks)
- b) Explain why maximum precipitation occurs below mountain summits in the tropics and subtropics while in temperate regions it occurs at mountain summits. (12 marks)

(25 Marks)

QUESTION 2

Describe two climate classification systems.

(25 Marks)

QUESTION 3

Discuss the mechanisms behind the layering of the atmosphere.

(25 Marks)

SECTION B: ANSWER ANY TWO QUESTIONS

QUESTION 4

- a) Explain the methods used to estimate the average precipitation of an area. (10 marks)
- b) Which method in (a) above is likely to give accurate results and why? (5 marks)
- c) Calculate the average precipitation of the given drainage basin in Figure 1 (each small square is 1 square km). (10 marks)

(25 Marks)

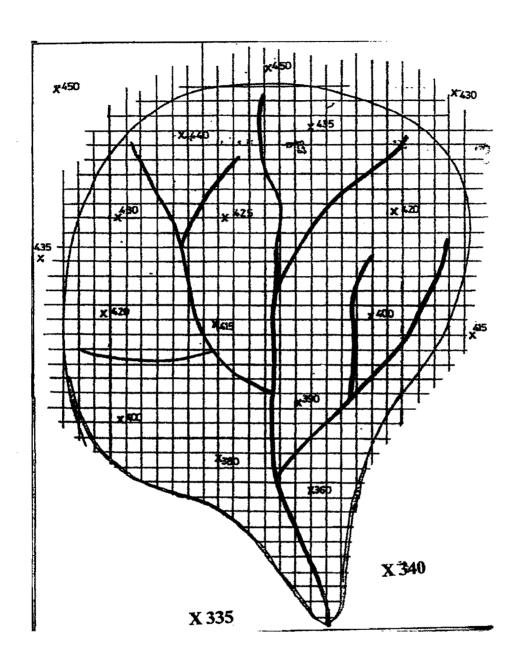


Figure 1 Annual precipitation (mm) at stations of a hypothetical river basin

QUESTION 5

Table 1 presents the current meter velocity measurements for Mtilane river at Lozitha Road

Bridge. Calculate the total river discharge that was measured. (25 marks)

Table 1 Discharge measurement recordings at Mtilane River at Lozitha Road Bridge

Vertical	Distance from river	Water depth	Velocity at 0.6 of the
number	bank (m)	(m)	depth V _{0.6} (m/s)
1	3.0	1.9	0.35
2	5.5	3.2	0.37
3	8.5	5.0	0.45
4	10.0	7.0	0.7
5	15.0	6.0	0.5
6	17.5	3.0	0.4
7	20.0	2.0	0.3
8	23.0	0.3	0.2
9	23.5	0.0	0.0

QUESTION 6

Figure 2 presents the mass curve for a hypothetical river basin. Estimate the preliminary reservoir capacity for a demand rate of 100,000 acre ft/year. (25 Marks)

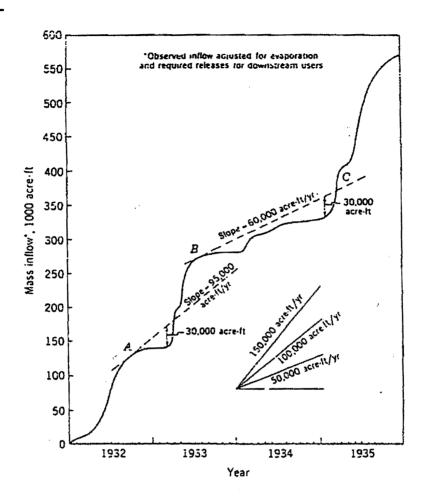


Figure 2 Mass curve for a hypothetical river basin