University of Swaziland

Final Examination, May 2012

BSc I, EEng I, BEd I, BASS I

Title of Paper	: Introduction to Calculus
Course Number	: M115
Time Allowed	: Three (3) hours
Instructions	:

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

(a) Evaluate

(i)	$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - x - 2}$	[3 marks]
	2 1	

- (ii) $\lim_{x \to \infty} \frac{x^2 4}{x^2 x 2}$ [3 marks]
- (b) Differentiate and simplify

(i)
$$y = (x - 1)\sqrt{3 + 2x}$$
 [4 marks]

(ii)
$$y = \tan^{-1}\left(\frac{2}{x}\right)$$
 [3 marks]

(c) Show that $y = e^{-t} \sin 2t$ satisfies the differential equation

$$\ddot{y}+2\dot{y}+5y=0, \qquad \qquad \left[7 ext{ marks}
ight]$$

where $\dot{y} = \frac{\mathrm{d}y}{\mathrm{d}t}$.

Question 2

- (a) Differentiate
 - (i) $y = x^{3-2x}$ [5 marks]

(ii)
$$F(x) = \ln\left(\frac{x}{1-x}\right)$$
 [5 marks]

(b) Integrate

$$\int \frac{4x+5}{x^3+2x+x} \,\mathrm{d}x. \qquad [10 \text{ marks}]$$

(a) Find $\frac{\mathrm{d}f}{\mathrm{d}x}$ using the *limit definition*, for

$$f(x) = \frac{x}{1 - 2x}.$$
 [8 marks]

(b) Integrate i. $\int \frac{3x-9}{\sqrt{4+6x-x^2}} dx$ [6 marks] ii. $\int_{0}^{\frac{1}{2}\pi} \sin^2\theta \cos^3\theta d\theta$ [6 marks]

Question 4

(a) Evaluate

i. $\lim_{\theta \to 0} \frac{\theta^2}{1 - \cos \theta}$ [4 marks] ii. $\lim_{\theta \to 0} \frac{\ln (e^2 + \theta)}{1 - \cos \theta}$ [3 marks]

ii.
$$\lim_{\theta \to 0} \frac{\ln \left(0 + e^{\gamma}\right)}{e^{\theta} + e^{-\theta}}$$
 [3 marks]

(b) Use Leibnitz rule to find $\frac{d^4f}{dx^4}$, given

 $f(x) = x^5 e^{-2x}$. [7 marks]

(b) Find the exact value of the area of the region enclosed between the curves $y = x^2$ and $y = 16 - x^2$. [6 marks]

(a) Find y'. i. $y = e^{\pi} + \ln(2x) - \sin 2x - \frac{1}{e^{2x}} + \frac{3}{2x^4}$ [3 marks] ii. $y = \frac{1 - 2x^2}{2 + 3x^2}$ [6 marks] (b) Find the equation of the normal to the curve $x^2y - 2xy^2 - 3 = 0$ at the point (-1, 1). [4 marks] (c) Integrate $\int x^4 \sin 2x \, dx$. [7 marks]

Question 6

(a) Consider the statement:

Every inflexion point is a stationary point.

Is the statement true or false? Explain. [5 marks]

(b) Given

find y''.

(c) Integrate

 $y = \frac{x}{\sqrt{2x+1}},$

[8 marks]

$$\int \frac{\mathrm{d}x}{x^2 + 4x + 13}.$$
 [7 marks]

14

(a) Differentiate

 $\Gamma(\theta) = \sin^4 \theta + 2\cos^2 \theta - \cos^4 \theta$ and show that $\frac{\mathrm{d}\Gamma}{\mathrm{d}\theta} = 0.$ [6 marks]

(b) Integrate

i.
$$\int_{0}^{2} \sqrt{4 - x^{2}} dx$$
 [7 marks]
ii.
$$\int_{0}^{4} \frac{dx}{2 + \sqrt{x}}$$
 [7 marks]