University of Swaziland

Supplementary Examination, July 2012

BSc I, EEng I, BEd I, BASS I

Title of Paper	: Introduction to Calculus
Course Number	: M115
Time Allowed	: Three (3) hours
Instructions	:

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

(a) Evaluate

(i)
$$\lim_{x \to -1} \frac{x+1}{x^2-1}$$
 [3 marks]
 $2x+1$

(ii)
$$\lim_{x \to \infty} \frac{2x+1}{x^2+x-3}$$
 [3 marks]

(b) Differentiate and simplify

(i)
$$y = x\sqrt{2x-1}$$
 [4 marks]

(ii)
$$y = \tan^{-1}\left(\frac{x}{2}\right)$$
 [3 marks]

(c) Show that $y = 5 \sin 3t - 4 \cos 3t$ satisfies the differential equation

$$\ddot{y} + 9y = 0,$$
 [7 marks]

where $\dot{y} = \frac{\mathrm{d}y}{\mathrm{d}t}$.

Question 2

(a) Differentiate (i) $y = x^x$ [5 marks]

(ii)
$$F(x) = \ln(\sin 2x)$$
 [5 marks]

(b) Integrate

$$\int \frac{x}{x^2 - 2x - 8} \,\mathrm{d}x. \qquad [10 \text{ marks}]$$

(a) Find $\frac{\mathrm{d}f}{\mathrm{d}x}$ using the *limit definition*, for

$$f(x) = \frac{1}{\sqrt{x}}.$$
 [8 marks]

(b) Integrate

i.
$$\int \frac{3x^2}{\sqrt{x^3 + 5}} \, \mathrm{d}x \qquad \qquad [6 \text{ marks}]$$

ii.
$$\int_0^{\frac{\pi}{2}\pi} \sin^2\theta \cos\theta d\theta \qquad \qquad [6 \text{ marks}]$$

Question 4

(a) Evaluate

i.
$$\lim_{\theta \to 0} \frac{\tan 2\theta}{\theta}$$
 [4 marks]

ii.
$$\lim_{\theta \to 0} \frac{e^{\theta} - e^{-\theta}}{e^{\theta} + e^{-\theta}}$$
 [3 marks]

(b) Use Leibnitz rule to find $\frac{d^4f}{dx^4}$, given

$$f(x) = x^5 \ln x. \qquad [7 \text{ marks}]$$

(b) The base of a rectangle rests on the x-axis while the two top vertices are on the parabola $y = 16 - \frac{1}{3}x^2$. Find the largest such rectangle. [6 marks]

(a) Find y'. i. $y = e^2 + \ln(x) - 4x^3 - 8x^{\frac{3}{4}} + \frac{8}{x}$ [3 marks] ii. $y = \frac{2x - 1}{4x + 3}$ [6 marks] (b) Find the equation of the normal to the curve

- (b) Find the equation of the normal to the curve $x^2 xy^2 + 8 = 0$ at the point (1, -3). [4 marks]
- (c) Integrate

$$\int x^2 e^{2x} \, \mathrm{d}x. \qquad [7 \text{ marks}]$$

Question 6

(a) Make a sketch of the graph of

$$y = H(x+2) - H(x-5)$$

where H(x) denotes the Heaviside step function. [5 marks]

 $y = \tan 2x$,

(b) Given

find y'''.

[8 marks]

(c) Integrate

$$\int \frac{\mathrm{d}x}{x^2 - 4x + 5}.$$
 [7 marks]

(a) Differentiate

$$\Gamma(\theta) = \sin^4 \theta - \cos^4 \theta$$

and show that $\frac{\mathrm{d}\Gamma}{\mathrm{d}\theta} = 2\sin 2\theta$. [6 marks]

(b) Integrate

i.
$$\int \frac{\mathrm{d}x}{\sqrt{9-x^2}}$$
 [7 marks]

ii.
$$\int_0^4 x \sqrt{1-x} dx$$
 [7 marks]