University of Swaziland

Supplementary Examination, July 2012

BSc I, EEng I, BEd I, BASS I

Title of Paper : Introduction to Calculus
Course Number : M115
Time Allowed : Three (3) hours
Instructions

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This Paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) Evaluate
(i) $\lim _{x \rightarrow-1} \frac{x+1}{x^{2}-1}$
[3 marks]
(ii) $\lim _{x \rightarrow \infty} \frac{2 x+1}{x^{2}+x-3}$
[3 marks]
(b) Differentiate and simplify
(i) $y=x \sqrt{2 x-1}$
(ii) $y=\tan ^{-1}\left(\frac{x}{2}\right)$
[3 marks]
(c) Show that $y=5 \sin 3 t-4 \cos 3 t$ satisfies the differential equation

$$
\ddot{y}+9 y=0,
$$

[7 marks]
where $\dot{y}=\frac{\mathrm{d} y}{\mathrm{~d} t}$.

Question 2

(a) Differentiate
(i) $y=x^{x}$
(ii) $\quad F(x)=\ln (\sin 2 x)$
(b) Integrate

$$
\int \frac{x}{x^{2}-2 x-8} \mathrm{~d} x
$$

[10 marks]

Question 3

(a) Find $\frac{\mathrm{d} f}{\mathrm{~d} x}$ using the limit definition, for

$$
f(x)=\frac{1}{\sqrt{x}} .
$$

(b) Integrate
i. $\quad \int \frac{3 x^{2}}{\sqrt{x^{3}+5}} \mathrm{~d} x$
[6 marks]
ii. $\int_{0}^{\frac{1}{2} \pi} \sin ^{2} \theta \cos \theta \mathrm{~d} \theta$
[6 marks]

Question 4

(a) Evaluate
i. $\lim _{\theta \rightarrow 0} \frac{\tan 2 \theta}{\theta}$
[4 marks]
ii. $\lim _{\theta \rightarrow 0} \frac{e^{\theta}-e^{-\theta}}{e^{\theta}+e^{-\theta}}$
[3 marks]
(b) Use Leibnitz rule to find $\frac{\mathrm{d}^{4} f}{\mathrm{~d} x^{4}}$, given

$$
f(x)=x^{5} \ln x
$$

[7 marks]
(b) The base of a rectangle rests on the x-axis while the two top vertices are on the parabola $y=16-\frac{1}{3} x^{2}$. Find the largest such rectangle.
[6 marks]

Question 5

(a) Find y^{\prime}.
$\begin{array}{llr}\text { i. } y=e^{2}+\ln (x)-4 x^{3}-8 x^{\frac{3}{4}}+\frac{8}{x} & \text { [3 marks] } \\ \text { ii. } y=\frac{2 x-1}{4 x+3} & \text { [6 marks] }\end{array}$
(b) Find the equation of the normal to the curve $x^{2}-x y^{2}+8=0$ at the point $(1,-3)$.
[4 marks]
(c) Integrate

$$
\int x^{2} e^{2 x} \mathrm{~d} x . \quad[7 \text { marks }]
$$

Question 6

(a) Make a sketch of the graph of

$$
y=H(x+2)-H(x-5)
$$

where $H(x)$ denotes the Heaviside step function. [5 marks]
(b) Given

$$
y=\tan 2 x
$$

find $y^{\prime \prime \prime}$. [8 marks]
(c) Integrate

$$
\int \frac{\mathrm{d} x}{x^{2}-4 x+5} . \quad[7 \text { marks }]
$$

Question 7

(a) Differentiate

$$
\Gamma(\theta)=\sin ^{4} \theta-\cos ^{4} \theta
$$

and show that $\frac{\mathrm{d} \Gamma}{\mathrm{d} \theta}=2 \sin 2 \theta$.
[6 marks]
(b) Integrate
i. $\int \frac{\mathrm{d} x}{\sqrt{9-x^{2}}}$
[7 marks]
ii. $\int_{0}^{4} x \sqrt{1-x} \mathrm{~d} x$
[7 marks]

