University of Swaziland

Final Examination, 2011/2012

BSc II, Bass II, BEd II

Title of Paper : Calculus I
Course Number : M211
Time Allowed : Three (3) hours
Instructions

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

QUESTION 1

1.1 Find the absolute maximum and absolute minimum values of the function

$$
f(x)=2 x^{3}-3 x^{2}-12 x+1
$$

on the interval $[-2,3]$.
1.2 Consider the function $f(x)=3 x^{5}-5 x^{3}+3$.
1.2.1 Find the intervals on which f is increasing or decreasing.
1.2.2 Find the local maximum and local minimum values of f.
1.2.3 Find the intervals on which f is concave up and concave down.
1.2.4 Find the inflection points of f.
1.2.5 Sketch a graph of f using the information in 1.2.1-1.2.4.

QUESTION 2

Evaluate the following limits.
$2.1 \lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$
$2.2 \lim _{x \rightarrow \infty} x^{3} e^{-x}$
$2.3 \lim _{x \rightarrow 0}(\csc x-\cot x)$
$2.4 \lim _{x \rightarrow 0}(1-2 x)^{1 / x}$

QUESTION 3

3.1 A Norman window has the shape of a rectangle surmounted by a semicircle as shown below.

If the perimeter of the window is 10 m , find the dimensions of the window, so that the greatest possible amount of light is permitted.
3.2 Show that the area of the largest rectangle that can be inscribed in a semicircle of radius r is r^{2}. (Hint: use the picture below).

QUESTION 4

4.1 Find the volume of a solid whose base is the triangular region with vertices $(0,0),(1,0)$ and $(0,1)$ and whose cross-sections perpendicular to the y-axis are squares.
4.2 Use cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $y=x-x^{2}$ and the x-axis about the line $x=2$.

QUESTION 5

5.1 Find the length of the curve with parametric equations $x=\cos t, y=t+\sin t, 0 \leq t \leq \pi$. [Hint: $\left.1+\cos t=2 \cos ^{2}\left(\frac{t}{2}\right) \cdot\right]$
5.2 Find the length of the curve $y=\frac{1}{4} x^{2}-\frac{1}{2} \ln x, 1 \leq x \leq 2$.

QUESTION 6

Test each of the following series for convergence or divergence. State the test used.
$6.1 \sum_{n=1}^{\infty} \frac{n^{2}}{5 n^{2}+4}$
$6.2 \sum_{n=1}^{\infty} \frac{\ln n}{n}$
$6.3 \sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3^{n}}$
$6.4 \sum_{n=1}^{\infty}\left(\frac{n^{2}+1}{2 n^{2}+1}\right)^{n}$

QUESTION 7

7.1 Show that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
7.2 Find the radius of convergence and the interval of convergence for the power series

$$
\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{n}}{\sqrt{n+1}}
$$

