University of Swaziland

Supplementary Examination, 2011/2012

BSc II, Bass II, BEd II

Title of Paper	: Calculus I
Course Number	: M211
Time Allowed	: Three (3) hours
Instructions	:

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

[6

[3

QUESTION 1

1.1 Find the absolute maximum and absolute minimum values of the function

$$f(x) = \frac{x}{x^2 + 1} + 1$$

on the interval [0, 2].

- 1.2 Consider the function $f(x) = x^4 2x^2 + 3$.
 - 1.2.1 Find the intervals on which f is increasing or decreasing.
 - 1.2.2 Find the local maximum and local minimum values of f.
 - 1.2.3 Find the intervals on which f is concave up and concave down.

1.2.4 Find the inflection points of f.

QUESTION 2

Use L'Hopital's Rule to evaluate the following limits.

- 2.1 $\lim_{x \to 0} \frac{e^x e^{-x} 2x}{x \sin x}$
- $2.2 \lim_{x \to \infty} x e^{1/x}$

2.3
$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{1}{\ln x} \right)$$
 [6]

$$2.4 \lim_{x \to \infty} x^{2/x}$$
 [5]

QUESTION 3

- 3.1 1200 cm² of material is available to make a box with a square base and an open top. Find the largest possible volume of the box. [1]
- 3.2 Find the points on the ellipse $4x^2 + y^2 = 4$ that are farthest away from the point (1, 0). [1]

QUESTION 4

4.1 Find the volume of the solid that lies between the planes x = -1 and x = 1 and whose cross-sections perpendicular to the x-axis are circular disks whose diameters run from the parabola $y = x^2$ to the parabola $y = 2 - x^2$ (see below).

[1

4.2 Use cylindrical shells to find the volume of the solid obtained when the region bounded by the curve $y = 3x - x^2$ and the x-axis is rotated about the vertical line x = -1. [1]

QUESTION 5

- 5.1 Find the length of the curve with parametric equations $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le \pi/2$. [*Hint:* $1 + \cos t = 2\cos^2\left(\frac{t}{2}\right)$.] [1]
- 5.2 The line segment x = 1 y, $0 \le y \le 1$ is rotated about the y-axis to generate an open cone. Find its surface area. [1]

QUESTION 6

6.1 Investigate the convergence of each series.

6.1.1 $\sum_{n=2}^{\infty} \frac{2^n + 5}{3^n}$

$$6.1.2 \quad \sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n \tag{5}$$

6.2 Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{x^n}{\sqrt{n}}$.

QUESTION 7

7.1 Determine whether the sequence whose *n*th term is $a_n = \left(\frac{n+1}{n-1}\right)^n$ is convergent or not. If it is convergent, find $\lim_{n \to \infty} a_n$. [1]

7.2 Consider the sequence $\{a_n\}$ defined recursively by

$$a_1 = 2$$
 $a_{n+1} = \frac{1}{2}(a_n + 6)$ for $n = 1, 2, 3, ...$

- 7.2.1 Use mathematical induction to show that $a_{n+1} > a_n$ for all $n \ge 1$. [4]
- 7.2.2 Use mathematical induction to show that $a_n < 6$ for all n. [4]
- 7.2.3 Use your answers to 7.2.1 and 7.2.2 to determine whether or not the sequence is convergent.

END OF EXAMINATION PAPER_

[2

[1