University of Swaziland

Supplementary Examination, 2011/2012

BSc II, Bass II, BEd II

Title of Paper : Calculus I
Course Number : M211
Time Allowed : Three (3) hours
Instructions :

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

QUESTION 1

1.1 Find the absolute maximum and absolute minimum values of the function

$$
f(x)=\frac{x}{x^{2}+1}+1
$$

on the interval $[0,2]$.
1.2 Consider the function $f(x)=x^{4}-2 x^{2}+3$.
1.2.1 Find the intervals on which f is increasing or decreasing.
1.2.2 Find the local maximum and local minimum values of f.
1.2.3 Find the intervals on which f is concave up and concave down.
1.2.4 Find the inflection points of f.

QUESTION 2

Use L'Hopital's Rule to evaluate the following limits.
$2.1 \lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x}$
$2.2 \lim _{x \rightarrow \infty} x e^{1 / x}$
$2.3 \lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{1}{\ln x}\right)$
$2.4 \lim _{x \rightarrow \infty} x^{2 / x}$

QUESTION 3

$3.11200 \mathrm{~cm}^{2}$ of material is available to make a box with a square base and an open top. Find the largest possible volume of the box.
3.2 Find the points on the ellipse $4 x^{2}+y^{2}=4$ that are farthest away from the point $(1,0)$.

QUESTION 4

4.1 Find the volume of the solid that lies between the planes $x=-1$ and $x=1$ and whose cross-sections perpendicular to the x-axis are circular disks whose diameters run from the parabola $y=x^{2}$ to the parabola $y=2-x^{2}$ (see below).

4.2 Use cylindrical shells to find the volume of the solid obtained when the region bounded by the curve $y=3 x-x^{2}$ and the x-axis is rotated about the vertical line $x=-1$.

QUESTION 5

5.1 Find the length of the curve with parametric equations $x=\cos ^{3} t, y=\sin ^{3} t, 0 \leq t \leq \pi / 2$. $\left[\right.$ Hint: $\left.1+\cos t=2 \cos ^{2}\left(\frac{t}{2}\right).\right]$
5.2 The line segment $x=1-y, 0 \leq y \leq 1$ is rotated about the y-axis to generate an open cone. Find its surface area.

QUESTION 6

6.1 Investigate the convergence of each series.
6.1.1 $\sum_{n=0}^{\infty} \frac{2^{n}+5}{3^{n}}$
6.1.2 $\sum_{n=1}^{\infty}\left(\frac{1}{1+n}\right)^{n}$
6.2 Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{x^{n}}{\sqrt{n}}$.

QUESTION 7

7.1 Determine whether the sequence whose nth term is $a_{n}=\left(\frac{n+1}{n-1}\right)^{n}$ is convergent or not. If it is convergent, find $\lim _{n \rightarrow \infty} a_{n}$.
7.2 Consider the sequence $\left\{a_{n}\right\}$ defined recursively by

$$
a_{1}=2 \quad a_{n+1}=\frac{1}{2}\left(a_{n}+6\right) \quad \text { for } n=1,2,3, \ldots
$$

7.2.1 Use mathematical induction to show that $a_{n+1}>a_{n}$ for all $n \geq 1$.
7.2.2 Use mathematical induction to show that $a_{n}<6$ for all n.
7.2.3 Use your answers to 7.2 .1 and 7.2 .2 to determine whether or not the sequence is convergent.

