University of Swaziland

Final Examination, 2011/12

BSc II, Bass II, BEd II, BEng

Title of Paper	: Calculus II
Course Number	: M212
Time Allowed	: Three (3) hours
Instructions	$:$

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) Express the given rectangular equations in polar
(i) $\quad x y=4$
(ii) $x^{2}-8 x+y^{2}+7=0$
(b) Consider the curve

$$
r=2+2 \sin \theta
$$

(i) Sketch the curve.
(ii) Find the area enclosed by the curve.
(iii) Find the length of the curve.

Question 2

(a) Find the equation of the tangent to the surface

$$
f(x, y)=x^{2}+3 y^{2}-4 z^{2}+3 x y-10 y z+4 x-5 z-22
$$

$$
\begin{equation*}
\text { at the point }(1,-2,1) \tag{10}
\end{equation*}
$$

(b) Find and classify the critical points of

$$
\begin{equation*}
f(x, y)=y^{3}+3 x^{2} y-3 x^{2}-3 y^{2}+2 \tag{10}
\end{equation*}
$$

Question 3

(a) Consider Laplace's equation

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

where $z=f(x, y)$. Show that under the transformation $x=r \cos \theta, y=r \sin \theta$, Laplace's equation takes the form

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{\partial^{2} f}{\partial \theta^{2}}=0 \tag{10}
\end{equation*}
$$

(b) Find the point on the plane

$$
x+2 y-3 x-4=0
$$

which is nearest to the origin.

Question 4

(a) Show that each of the specified functions satisfies the given partial differential equation.
(i) $f(x, y)=\sqrt{x^{2}+y^{2}}$ satisfies $x f_{x}+y f_{y}=0$
(ii) $f(x, y)=e^{\frac{x}{y}} \sin \left(\frac{x}{y}\right)+e^{\frac{y}{x}} \cos \left(\frac{y}{x}\right)$ satisfies

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=0 .
$$

(b) Evaluate

$$
\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y
$$

where R is bounded by $x+y+1=0$ and $x+y^{2}=1$. [10]

Question 5

(a) For each of the following use a double integral to find the area bounded by the curves.
(i) $y=x^{3}+8, \quad y=4 x+8$
(ii) $x=y^{2}-2 y, y+x=12$
(b) Find the directional derivatives of
(i) $f(x, y, z)=x^{2}+y^{2}+z^{2}$ at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)=$ $P_{0}(3,2,1)$ in the direction \vec{v} from the point $(1,0,1)$ to $(2,-1,3)$.
(ii) $f(x, y, z)=x^{2} y+x z$ at $P_{0}(-1,1,-1)$ in the direction of the vector from $(3,2,1)$ to $(3,1,-1)$.

Question 6

(a) Show that the ellipsoid $3 x^{2}+3 y^{2}+8 z^{2}-34=0$ and the hyperboloid of two piece $4 x^{2}-4 y^{2}-z^{2}-4=0$ are orthogonal (perpendicular) to each other at the common point $\left(\frac{4}{5} \sqrt{5}, \sqrt{2}, \frac{2}{5} \sqrt{5}\right)$.
(b) Show that the function

$$
f(x, y)=\frac{x y}{x-y}
$$

satisfies

$$
\begin{equation*}
x^{2} \frac{\partial^{2} f}{\partial x^{2}}+2 x y \frac{\partial^{2} f}{\partial x \partial y}+y^{2} \frac{\partial^{2} f}{\partial y^{2}}=0 \tag{10}
\end{equation*}
$$

Question 7

Evaluate
(a) $\int_{0}^{1} \int_{0}^{x^{2}} \int_{x y}^{x+y} x y z \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x$
(b) $\int_{0}^{8} \int_{0}^{\sqrt{81-y^{2}}} \int_{0}^{\sqrt{81-y^{2}-x^{2}}} \frac{1}{\sqrt{x^{2}+y^{2}}} \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x \quad$ [10]

