University of Swaziland

Supplementary Examination, 2011/12

BSc II, Bass II, BEd II, BEng

Title of Paper	: Calculus II
Course Number	: M212
Time Allowed	: Three (3) hours
Instructions	:

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

Question 1

(a) Evaluate the double integral of $f(x, y) = xy^2 + x^2$ over the region bounded by the curves $y = x^2$ and $x = y^2$. [10]

(b) Evaluate

$$\iint_R \left(4 - x^2 - y\right) \mathrm{d}x \mathrm{d}y$$

where R is the region bounded by $x = \sqrt{4-y}$, x = 0, y = 0. [10]

Question 2

(a)

(i) Sketch the graph of the curve

$$r = 1 + \sin \theta. \tag{3}$$

(ii) Find the area enclosed by the curve in (i). [5]

(b) Find the volume under the surface

$$z = f(x, y) = x^4 y^4$$

and above the circle $x^2 + y^2 = 1$. [12]

Question 3

(a) Consider Laplace's equation

$$rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2} = 0,$$

where z = f(x, y). Show that under the transformation $x = r \cos \theta$, $y = r \sin \theta$, Laplace's equation takes the form

$$\frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{\partial^2 f}{\partial \theta^2} = 0.$$
 [10]

(b) Find the directional derivative of

$$f(x,y) = x^3 e^y + xy$$

in the direction of the vector from $P_0(4, 0, 16)$ to $P_1(-3, 1, 4)$. [6]

(c) Show that $f(x, y) = \cos(x + y)$ is a solution to

$$\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0.$$
 [4]

Question 4

Consider the cardioid

$$\left(x^2+y^2-x
ight)^2 = x^2+y^2.$$

- (a) Transform the equation of the cardioid from cartesian to polar coordinates.
- (ii) Sketch the cardioid.
- (c) Find the area enclosed by the cardioid.
- (d) Find the length of the cardioid.

Question 5

(a) Find and classify the critical points of

$$f(x,y) = x^3 + y^3 - 3xy.$$
 [8]

(b) Use the method of Lagrange multipliers to find the extreme values of

$$f(x,y) = xy$$

subject to

$$4x^2 + 8y^2 = 16. [12]$$

Question 6

- (a) Find df when $f(x, y) = x^2 e^y \cos(xy)$. [5]
- (b) Find g(x, y) such that

$$dg = \left[2y^{2}(\sin x + x\cos x) - ye^{xy}\right]dx + \left[4xy\sin x - xe^{xy} + 2y\right]dy$$
[5]

(c) Show that the functions

(i)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z}$$

(ii) $f(x, y) = e^x \cos y$
are harmonic. [10]

Question 7

(a) Find the maximum and minimum values of the function

$$f(x, y, z) = xyz$$

subject to $x^2 + y^2 + z^2 = 1.$ [12]

(b) Find f_{xx}, f_{xy} and f_{yy} for

$$f(x,y) = x^2 + xy + y^2 \sin\left(\frac{x}{y}\right).$$
 [8]