University of Swaziland

Final Examination, May 2012

B.Sc II, B.A.S.S II, B.Ed II, B.Eng II

Title of Paper : Ordinary Differential Equations
Course Number : M213
Time Allowed : Three (3) Hours

Instructions :

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions. Submit solutions to ONLY FIVE questions.
4. Show all your working.
5. A Table of Laplace Transforms is provided at the end of the question paper.

Question 1

(a) Prove that if $f(x)$ and $g(x)$ are two different solutions of

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

then $c(f-g)+g$ is also a solution of the differential equation where c is a constant.
(b) Solve the following differential equations

$$
\begin{align*}
& \text { (i) }(x+2) \frac{d y}{d x}+y=f(x) \\
& \text { where } y(0)=4 \text { and } f(x)= \begin{cases}2 x, & 0 \leq x<2 \\
4, & x \geq 2\end{cases} \tag{6}\\
& \text { (ii) }\left(x \tan \frac{y}{x}+y\right) d x-x d y=0 \tag{7}
\end{align*}
$$

(c) Show that $5 x^{2} y^{2}-2 x^{3} y^{2}=1$ is an implicit solution of the differential equation

$$
\begin{equation*}
x \frac{d y}{d x}+y=x^{3} y^{3} \tag{4}
\end{equation*}
$$

Question 2

(a) Consider a differential equation of the form

$$
\left(y+x f\left(x^{2}+y^{2}\right)\right) d x+\left(y f\left(x^{2}+y^{2}\right)-x\right) d y=0
$$

(i) Show that an equation of this form is not exact.
(ii) Show that $\frac{1}{x^{2}+y^{2}}$ is an integrating factor of an equation of this form.
[6]
(b) Solve the following differential equation using two methods

$$
\begin{equation*}
\left(2 x^{2}+2 x y+y^{2}\right) d x+\left(x^{2}+2 x y\right) d y=0 . \tag{12}
\end{equation*}
$$

Question 3

(a) Prove that if

$$
M(x, y) d x+N(x, y) d y=0
$$

is a homogeneous equation, then the change of variables $x=u y$ transforms this equation into a separable equation with variables u and x.
(b) Solve the following differential equation

$$
(4 x+3 y+1) d x+(x+y+1) d y=0
$$

[14 marks]

Question 4

(a) Given that the following differential equation

$$
\mu(x)(P(x) y-Q(x)) d x+\mu(x) d y=0
$$

is exact. Find $\mu(x) \neq 0$, given $P(x)$ and $Q(x)$ are continuous functions. [5]
(b) Given $y=x$ is a solution of

$$
\begin{equation*}
\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0 \tag{15}
\end{equation*}
$$

find another linearly independent solution by reducing the order.

Question 5

Solve the following differential equations
(a) $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=e^{3 x}$.
(b) $\frac{d y}{d x}+2 x y=-x y^{4}$.
(c) $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0$.
(d) $\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}-\frac{4}{x^{2}} y=0$.

Question 6

(a) Solve the following differential equation

$$
y^{\prime \prime}+y=\sec x
$$

Use the method of variation of parameters to find the particular solution. [10]
(b) Solve using the method of Laplace transforms

$$
\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}-8 y=0, \quad y(0)=3, \quad y^{\prime}(0)=6
$$

Question 7

Find the series solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(2 x^{2}+1\right) y=0
$$

about $x=0$.
[20 marks]

Table of Laplace Transforms

$f(t)$	$F(s)$
t^{n}	$\frac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
$e^{a t}$	$\frac{1}{s-a}$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$
$\frac{1}{a-b}\left(e^{a t}-e^{b t}\right)$	$\frac{1}{(s-a)(s-b)}$
$\frac{1}{a-b}\left(a e^{a t}-b e^{b t}\right)$	$\frac{s}{(s-a)(s-b)}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\sin (a t)-a t \cos (a t)$	$\frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}}$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$
$\sin (a t) \sinh (a t)$	$\frac{2 a^{2}}{s^{4}+4 a^{4}}$
$\frac{d^{n} f}{d t^{n}}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$

