University of Swaziland

Supplementary Examination, July 2012

B.Sc II, B.A.S.S. II, B.Ed II, B.Eng II

Title of Paper : Ordinary Differential Equations
Course Number : M213
Time Allowed : Three (3) Hours

Instructions :

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions. Submit solutions to ONLY FIVE questions.
4. Show all your working.
5. A Table of Laplace Transforms is provided at the end of the question paper.

Question 1

(a) The differential equation

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=e^{x}+x^{2}
$$

has

$$
y_{c}=c_{1} e^{x}+c_{2} e^{-x}+c_{3} e^{2 x}
$$

as the complementary solution. Find the particular solution for the differential equation.
(b) Solve using Laplace transforms
(i) $\dot{y}(t)-5 y(t)=e^{5 t}, \quad y(0)=0$.
(ii) $\ddot{y}(t)+16 y(t)=2 \sin 4 t, \quad y(0)=-\frac{1}{2}, \quad \dot{y}(0)=0$.

Question 2

(a) Solve the boundary value problem

$$
y^{\prime \prime}+4 y^{\prime}+4 y=5 \sin 2 x, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

(b) Using the substitution $u=\ln x$. Find the general solution of

$$
2 x^{2} y^{\prime \prime}-3 x y^{\prime}+2 y=0 .
$$

Question 3

Find the series solution of

$$
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0
$$

about $x=0$.

Question 4

(a) Show that

$$
y=c e^{-\int \frac{q(x)}{p(x)} d x}
$$

is a solution to the differential equation

$$
p(x) y^{\prime}+q(x) y=0
$$

where c is an arbitrary constant.
(b) Solve the following differential equation

$$
(x+y) d x+(3 x+3 y-4) d y=0 .
$$

Question 5

Find the general solution of the following differential equations
(a)

$$
y^{\prime}=\frac{2 y^{4}+x^{4}}{x y^{3}}
$$

(b)

$$
x y d x+\left(1+x^{2}\right) d y=0
$$

Question 6

(a) Solve

$$
y^{\prime}=\frac{2+y e^{x y}}{2 y-x e^{x y}}
$$

(b) Show that the solution for the linear differential equation

$$
p(x) y^{\prime}(x)+q(x) y(x)=r(x)
$$

is given by

$$
y(x)=e^{-\int \frac{g(x)}{p(x)} d x}\left(\int \frac{r(x)}{p(x)} e^{\int \frac{q(x)}{p(x)} d x} d x+c\right) .
$$

Hence solve

$$
x y^{\prime}+2 y=4 x^{2} .
$$

Question 7

Solve the following differential equations
(a)

$$
y^{i v}+5 y^{\prime \prime}-36 y=0 .
$$

(b)

$$
y^{i v}-10 y^{\prime \prime \prime}+25 y^{\prime \prime}=-4
$$

(c)

$$
x d x+y e^{-x^{2}} d y=0
$$

Table of Laplace Transforms

$f(t)$	$F(s)$
t^{n}	$\frac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
$e^{a t}$	$\frac{1}{s-a}$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$
$\frac{1}{a-b}\left(e^{a t}-e^{b t}\right)$	$\frac{1}{(s-a)(s-b)}$
$\frac{1}{a-b}\left(a e^{a t}-b e^{b t}\right)$	$\frac{s}{(s-a)(s-b)}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\sin (a t)-a t \cos (a t)$	$\frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}}$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$
$\sin (a t) \sinh (a t)$	$\frac{2 a^{2}}{s^{4}+4 a^{4}}$
$\frac{d^{n} f}{d t^{n}}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$

