BSc. II

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTITON 1

(a) Does the point $R(2,-1)$ lie on the line through $P(-1,1)$ and $Q(5,-3)$?
(b) Find the angle between $\bar{u}=(1,-2,4)$ and $\bar{v}=(1,2,4)$.
(c) Use vector product to find the area of the parallelogramm spanned by the vectors $\bar{a}=(2,0,0)$ and $\bar{b}=(2,2,0)$.
(d) Find the volume of parallelepiped spanned by the directed segments $\overline{O A}, \overline{O B}$ and $\overline{O C}$, if the coordinates of A, B and C are $(8,4,0),(2,6,0),(0,4,6)$, respectively.

QUESTION 2

(a) If $f(x)=x^{2}+1$, find all numbers in the interval $(1,2)$ for which the mean value theorem is satisfied.
(b) Compute
(i) $\lim _{x \rightarrow 0} \frac{\tan x}{x}$,
(ii) $\lim _{x \rightarrow+\infty} \frac{x \ln x}{(x+1)^{2}}$,
(iii) $\lim _{x \rightarrow+0} x \exp \left(\frac{1}{x}\right)$.
(c) Use the quadratic approximation to compute $\sqrt{1+x}$ for small $|x|$ and estimate the error. In particular compute $\sqrt{0.164}$.

QUESTION 3

(a) Find the fourth Taylor polynomial at $x_{0}=1$, for $f(x)=x^{4}$.
(b) Find the partial derivatives of $f(x, y)=\sin \left(x^{2}+y\right)$, at $x=0, y=\pi$.
(c) Use the chain rule to evaluate f_{u}^{\prime} and f_{v}^{\prime} if $f(x, y)=x^{2}+y^{2}, x=u \cos v, y=u \sin v$.
(d) Verify equality of mixed derivatives theorem for

$$
f(x, y)=\sin (2 x+3 y)
$$

(e) If $f(x, y)=x^{2} e^{x y}$, what is $d f$?

QUESTION 4

a) For the function $f=x^{2}+x y+y z+4 z$ find
(i) the gradient,
(ii) the stationary points.
b) Find and classify all stationary points if $f(x, y)=x^{3}+y^{3}+3 x y$.
c) Use the method of Lagrange to find the extreme value of $f(x, y)=x^{2}+y^{2}$, subject to constraint $x+2 y=3$.
(d) A farmer who wants to create a rectangular grazing field bordering on a straight river has 600 m of fencing material. If the side along the stream will not be fenced what length and width will provide the maximum grazing area?

QUESTION 5

a) Compute the volume under the graph of $z=f(x, y)=x y+1$ over the region $0<x<2,0<$ $y<4$.
b) Compute $\iint_{D} x^{2} y d x d y$ if D is the interior of the triangle with vertices $(0,0),(0,1),(1,1)$.
c) Use the separation of variables to evaluate integral of $f=y^{2} e^{-x}$, if $0<x<1, \quad 0<y<9$. [4]
d) Compute $\iint_{D} \sqrt{x^{2}+y^{2}} d x d y$ in polar coordinates, if D is a region in the first quadrant bounded by the uit circle and the coordinate axes.

QUESTION 6

a) Compute $\iint_{D} \int y z^{2} e^{x y z} d x d y d z$, where D is a cube $0<x<1,0<y<1,0<z<1$. [6] b) Let D be the region defined by the inequalities $x^{2}+y^{2}<1,0<z<x^{2}+y^{2}$. Pass to cylindrical coordinated to find $\iint_{D} \int x^{2} y^{2} d x d y d x$.
c) Separate the variables to solve the following initial value problem, $y^{\prime}=k y, y=y_{0}$ when $x=0$.

QUESTION 7

a) Consider $O D E$

$$
M(x, y) d x+N(x, y) d y=0
$$

Let M and N be homogeneous functions (HF) of the same degree in x and y. Show that $f=\frac{M}{N}$ is the HF of degree 0 .
b) Consider the following $O D E$

$$
2\left(2 x^{2}+y^{2}\right) d x-x y d y=0
$$

(i) Show that the coefficients are HF.
(ii) Solve the equation.
c) Consider $O D E$

$$
3 x(x y-2) d x+\left(x^{3}+2 y\right) d y=0
$$

(i) Test it for exactness, (ii) Solve ODE.
(d) Solve the following initial value problem,

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}-3 y=0, \\
y(0)=0, y^{\prime}(0)=-4 .
\end{gathered}
$$

