UNIVERSITY OF SWAZILAND

46

FINAL EXAMINATIONS 2011/12

BSc. II

TITLE OF PAPER	:	MATHEMATICS FOR SCIENTISTS
COURSE NUMBER	:	M215
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS.
SPECIAL REQUIREMENTS	:	2. ANSWER ANY <u>FIVE</u> QUESTIONS NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Does the point $R(2, -1)$ lie on the line through $P(-1, 1)$ and $Q(5, -3)$?	[4]
(b) Find the angle between $\overline{u} = (1, -2, 4)$ and $\overline{v} = (1, 2, 4)$.	[4]

(c) Use vector product to find the area of the parallelogramm spanned by the vectors $\overline{a} = (2, 0, 0)$ and $\overline{b} = (2, 2, 0)$. [5]

(d) Find the volume of parallelepiped spanned by the directed segments $\overline{OA}, \overline{OB}$ and \overline{OC} , if the coordinates of A, B and C are (8, 4, 0), (2, 6, 0), (0, 4, 6), respectively. [7]

QUESTION 2

(a) If $f(x) = x^2 + 1$, find all numbers in the interval (1,2) for which the mean value theorem is satisfied. [3]

(b) Compute

(i)
$$\lim_{x \to 0} \frac{\tan x}{x},$$

(ii)
$$\lim_{x \to +\infty} \frac{x \ln x}{(x+1)^2},$$

(iii)
$$\lim_{x \to +0} x \exp\left(\frac{1}{x}\right).$$

[3,3,5]

(c) Use the quadratic approximation to compute $\sqrt{1+x}$ for small |x| and estimate the error. In particular compute $\sqrt{0.164}$. [6]

QUESTION 3

(a) Find the fourth Taylor polynomial at $x_0 = 1$, for $f(x) = x^4$. (4)

(b) Find the partial derivatives of $f(x, y) = \sin(x^2 + y)$, at $x = 0, y = \pi$. [3]

(c) Use the chain rule to evaluate f'_u and f'_v if $f(x, y) = x^2 + y^2$, $x = u \cos v$, $y = u \sin v$. [6]

(d) Verify equality of mixed derivatives theorem for

$$f(x,y) = \sin(2x+3y).$$

[3]

(e) If
$$f(x, y) = x^2 e^{xy}$$
, what is df ? [4]

QUESTION 4

a) For the function $f = x^2 + xy + yz + 4z$ find

(i) the gradient,

(ii) the stationary points. [2,2]

b) Find and classify all stationary points if $f(x, y) = x^3 + y^3 + 3xy$. [4]

c) Use the method of Lagrange to find the extreme value of $f(x, y) = x^2 + y^2$, subject to constraint x + 2y = 3. [5]

(d) A farmer who wants to create a rectangular grazing field bordering on a straight river has 600m of fencing material. If the side along the stream will not be fenced what length and width will provide the maximum grazing area?

QUESTION 5

a) Compute the volume under the graph of z = f(x, y) = xy + 1 over the region 0 < x < 2, 0 < y < 4. [4]

b) Compute $\int_{D} \int x^2 y dx dy$ if D is the interior of the triangle with vertices (0,0), (0,1), (1,1). [5]

c) Use the separation of variables to evaluate integral of $f = y^2 e^{-x}$, if 0 < x < 1, 0 < y < 9. [4] d) Compute $\int_{D} \int_{D} \sqrt{x^2 + y^2} dx dy$ in polar coordinates, if D is a region in the first quadrant bounded by the unit circle and the coordinate axes. [7]

48

QUESTION 6

a) Compute $\int \int_{D} \int yz^2 e^{xyz} dxdydz$, where D is a cube 0 < x < 1, 0 < y < 1, 0 < z < 1. [6] b) Let D be the region defined by the inequalities $x^2 + y^2 < 1$, $0 < z < x^2 + y^2$. Pass to cylindrical coordinated to find $\int \int_{D} \int x^2y^2 dxdydz$. [8]

c) Separate the variables to solve the following initial value problem,

 $y' = ky, \ y = y_0$ when x = 0.

QUESTION 7

a) Consider ODE

$$M(x, y)dx + N(x, y)dy = 0.$$

Let M and N be homogeneous functions (HF) of the same degree in x and y. Show that $f = \frac{M}{N}$ is the HF of degree 0. [3]

b) Consider the following ODE

$$2(2x^2 + y^2)dx - xydy = 0$$

(i) Show that the coefficients are HF.

(ii) Solve the equation.

c) Consider ODE

$$3x(xy-2)dx + (x^3 + 2y)dy = 0.$$

[2,5]

[1,4]

(i) Test it for exactness, (ii) Solve ODE.

(d) Solve the following initial value problem,

$$y'' - 2y' - 3y = 0,$$

 $y(0) = 0, y'(0) = -4.$

[5]

[6]