# UNIVERSITY OF SWAZILAND 

## FINAL EXAMINATION 2011/2012

## B.A.S.S. /BEd. /BEng. /BSc. II

| TITLE OF PAPER | $:$ | LINEAR ALGEBRA |
| :--- | :--- | :--- |
| COURSE NUMBER | $:$ | M 220 |
| TIME ALLOWED | $:$ | THREE (3) HOURS |
| INSTRUCTIONS | $:$ | 1. THIS PAPER CONSISTS OF |
|  |  | SEVEN QUESTIONS. |
|  |  | 2. ANSWER ANY FIVE QUESTIONS |
| SPECIAL REQUIREMENTS | $:$ | NONE |

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

## QUESTION 1

1. (a) i. Compute the inverse $A^{-1}$ of the square matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 3 & 4\end{array}\right]$. [10 marks]
ii. Use $A^{-1}$ obtained in 1(a)i to solve the linear system

$$
\begin{aligned}
& x+2 y+3 z=9 \\
& x+3 y+5 z=-11 \\
& x+3 y+4 z=13
\end{aligned}
$$

iii. Can $A^{-1}$ from 1 (a)i be expressed as a product of elementary matrices? Justify your answer.
[2 marks]
(b) Determine the value of $k$ for which the matrix

$$
\left[\begin{array}{ccc}
1-k & -1 & 2 \\
0 & 4-k & 3 \\
0 & 4 & -k
\end{array}\right]
$$

is invertible.
[5 marks]

## QUESTION 2

2. (a) Consider the linear system

$$
\begin{array}{r}
x_{1}-2 x_{2}+3 x_{3}=1 \\
2 x_{1}+c x_{2}+6 x_{3}=6  \tag{1}\\
-x_{1}+3 x_{2}+(c-3) x_{3}=0
\end{array}
$$

i. Find values of $c$ for which the linear system (1) has;
A. no solutions,
B. a unique solution,
C. infinitely many solutions.
ii. In the case of $2(\mathrm{a}) \mathrm{iC}$ write down the general solution.
(b) Given that $x$ and $y$ are real numbers with $x<y$, uniquely determine the matrix $A=\left[\begin{array}{ll}x & 1 \\ 2 & y\end{array}\right]$ which satisfies the equation $A^{2}+5 A=-4\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] . \quad[7$ marks $]$

## QUESTION 3

3. (a) What does it mean to say that a non-empty set $U$ is a subspace of a vector space $V$ ?
(b) Determine whether or not the following subsets are subspaces. Justify your answers.
i. $U=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y z=0\right\}$ in $\mathbb{R}^{3}$.
ii. $U=\left\{p(x) \in P_{2} \mid p(0)=p^{\prime}(0)=0\right\}$ in the set $P_{2}$ of all polynomials of degree at most 2.
iii. $U=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: b+c=0\right\}$ in the set $M_{22}$ of all of all $2 \times 2$ matrices.
iv. $U=\left\{(a, b+c, b-c) \in \mathbb{R}^{3}: a, b, c \in \mathbb{R}\right\}$ in $\mathbb{R}^{3}$.

## QUESTION 4

4. (a) Let $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ be a set of vectors in a vector space $V$.
i. Explain the statement " $S$ spans $V$ ".
ii. What does it mean to say that $S$ is linearly independent in $V$ ?
iii. What does it mean to say that $S$ is a basis for $V$.
(b) Consider the vectors $\mathbf{u}_{1}=(1,2,4), \mathbf{u}_{2}=(1,1,1), \mathbf{u}_{3}=(1,-1,3)$ in $\mathbb{R}^{3}$.
i. Determine whether or not $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ spans $\mathbb{R}^{3}$.
ii. Determine whether or not the vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ are linearly independent in $\mathbb{R}^{3}$.
iii. Does $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ form a basis for $\mathbb{R}^{3}$ ? Justify your answer. [2 marks]
(c) i. Define the column space of an $m \times n$ matrix.
ii. Find a basis for the column space of the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 0 & 1 & 3 \\
-1 & -2 & 1 & 0 & -2 \\
1 & 2 & 1 & 2 & 4
\end{array}\right]
$$

5. (a) i. Let $U$ and $V$ be vector spaces, and let $T: U \rightarrow V$ be a linear transformation.
A. Define the image of $T$.
[2 marks]
B. Define the kernel of $T$.
[2 marks]
C. Define the rank and nullity of $T$, and state carefully a theorem that relates the two.
ii. Let $M_{22}$ denote the space of all real-valued $2 \times 2$ matrices, and let $T: M_{22} \rightarrow M_{22}$ be a map defined by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
a+c & 0 \\
b+c+d & c+d
\end{array}\right]
$$

A. Show that $T$ is a linear map.
B. Find bases for the image and kernel of $T$.
C. Verify the theorem mentioned in $5(\mathrm{a}) \mathrm{iC}$ for $T$.

## QUESTION 6

6. (a) Let $P_{2}$ denote the set of all polynomials of degree at most 2. If $p(x), q(x) \in P_{2}$ then write $p(x)=p_{2} x^{2}+p_{1} x+p_{0}$ and $q(x)=q_{2} x^{2}+q_{1} x+q_{0}$. Determine whether or not the following are inner products on $P_{2}$. Justify your answers.
i.

$$
\langle p, q\rangle=\int_{0}^{1}(1-x) p(x) q(x) d x
$$

[6 marks]
ii.

$$
\langle p, q\rangle=p_{2} q_{2}+p_{0} q_{0}
$$

(b) Consider the inner product space consisting of the vector space $M_{22}$ (of all realvalued $2 \times 2$ matrices) together with an inner product defined by

$$
\langle A, B\rangle=\operatorname{Tr}\left(B^{T} A\right)
$$

i. Define the norm $\|A\|$ of a matrix $A \in M_{22}$ with respect to this inner product.
ii. Compute $\|A\|$ when $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]$.
iii. Verify the Cauchy-Schwarz inequality for the matrices

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

in this inner product space.
7. (a) Given an $n \times n$ matrix $A$, what is meant by "an eigenvector and an eigenvalue of A"?
(b) For the matrix

$$
A=\left[\begin{array}{cc}
5 & 6 \\
-2 & -2
\end{array}\right]
$$

find its eigenvalues and corresponding eigenvectors.
[10 marks]
(c) i. State the Cayley-Hamilton theorem.
[2 marks]
ii. Verify the Cayley-Hamilton theorem with $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]$.

