SUPPLEMENTARY EXAMINATION 2011/2012

B.A.S.S. /BEd. /BEng. /BSc. II

TITLE OF PAPER	$:$	LINEAR ALGEBRA
COURSE NUMBER	$:$	M 220
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
		2. ANSWER ANY FIVE QUESTIONS
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) Use Gaussian elimination to solve the linear system

$$
\begin{array}{lr}
x+3 y+4 z= & 13 \\
x+2 y+3 z= & 9 \\
x+3 y+5 z= & -11
\end{array}
$$

(b) Express the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

as a product of elementary matrices.
[12 marks]

QUESTION 2

2. (a) Consider the linear system

$$
\begin{align*}
-x_{1}+3 x_{2}+2 x_{3} & =-8 \\
3 x_{1}+3 x_{2}+\alpha x_{3} & =\beta \tag{1}\\
x_{1} & =2
\end{align*}
$$

i. Find values of α and β for which the linear system (1) has;
A. no solutions,
B. a unique solution,
C. infinitely many solutions.
(b) Find all real numbers x and y such that

$$
\left|\begin{array}{lll}
0 & y & x \\
x & 0 & y \\
x & y & 0
\end{array}\right|=0
$$

(c) Let $A=\left(a_{i j}\right)$ be a 4×4 matrix with

$$
a_{i j}=\left\{\begin{array}{ll}
0 & \text { if } \\
j-i+1 & \text { if } i \leq j
\end{array} \quad i>j,\right.
$$

Write down A explicitly.
Is A invertible? Justify your answer.

QUESTION 3

3. (a) Write down the subspace test for determining whether or not a non-empty set W is a subspace of a vector space V.
(b) Determine whether or not the following subsets are subspaces. Justify your answers.
i. $U=\left\{(x, 0, y) \in \mathbb{R}^{3}: x, y \in \mathbb{R}\right\}$ in \mathbb{R}^{3}.
ii. $U=\left\{p(x) \in P_{1}: p^{\prime} \equiv 0\right\}$ in the set P_{1} of all polynomials of degree at most 1.
iii. $U=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a d-b c=0\right\}$ in the set M_{22} of all of all 2×2 matrices.
iv. $U=\left\{(a, b, c, d) \in \mathbb{R}^{4}: a-b+c-d=0\right\}$ in \mathbb{R}^{4}.

QUESTION 4

4. (a) Let $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ be a set of vectors in a vector space V.
i. Explain the statement " S spans V ".
ii. What does it mean to say that S is linearly independent in V ?
iii. What does it mean to say that S is a basis for V.
(b) Consider the set $S:=\{(1,2,0),(1,2,3),(6,5,4)\}$ of vectors in \mathbb{R}^{3}.
i. Determine whether or not S spans \mathbb{R}^{3}.
ii. Determine whether or not S is linearly independent in \mathbb{R}^{3}.
iii. Is S a basis for \mathbb{R}^{3} ? Justify your answer.
(c) i. Define the row space of an $m \times n$ matrix.
ii. Find a basis for the row space of the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 0 & 1 & 3 \\
1 & 2 & 1 & 2 & 4 \\
-1 & -2 & 1 & 0 & -2
\end{array}\right]
$$

5. (a) i. Let U and V be vector spaces, and let $T: U \rightarrow V$ be a linear transformation.
A. Define the image of T. [2 marks]
B. Define the kernel of T.
[2 marks]
C. Define the rank and nullity of T, and state carefully a theorem that relates the two.
ii. Are the following linear maps? Justify your answers.
A. $T: \mathbb{R}^{2} \rightarrow P_{1}$ with $T(a, b)=a x+b$.
B. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $T(x, y)=(x+y, x y)$.
C. $T: P_{2} \rightarrow P_{1}$ with $T\left(a x^{2}+b x+c\right)=2 a x+b$.

QUESTION 6

6. (a) Determine whether or not the following are inner products on the given vector spaces. Justify your answers.
i.

$$
\langle A, B\rangle=\operatorname{Tr}\left(B^{T} A\right)
$$

on the set M_{22} of all 2×2 matrices with standard addition and scalar multiplication for matrices.
ii.

$$
\langle p, q\rangle=\int_{0}^{1} x p(x) q(x) d x
$$

on the set P_{2} of all polynomials of degree at most 2 with standard addition and scalar multiplication.
[6 marks]
(b) Consider the inner product space consisting of the vector space \mathbb{R}^{2} together with an inner product defined by

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{v}^{T} \mathbf{u}
$$

i. Define the norm $\|\mathbf{u}\|$ of a vector $\mathbf{u} \in \mathbb{R}^{2}$ with respect to this inner product.
ii. Compute $\|\mathbf{u}\|$ when $\mathbf{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
iii. Verify the Cauchy-Schwarz inequality for the vectors

$$
\mathbf{u}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \text { and } \mathbf{v}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

in this inner product space.
7. (a) Given an $n \times n$ matrix A, what is meant by "an eigenvector and an eigenvalue of $A^{\prime \prime}$?
(b) For the matrix

$$
A=\left[\begin{array}{cc}
3 & 4 \\
4 & -3
\end{array}\right]
$$

find its eigenvalues and corresponding eigenvectors.
[10 marks]
(c) Let λ be an eigenvector of a square matrix A with corresponding eigenvector \mathbf{x}.
i. Show that \mathbf{x} is also an eigenvector of A^{-1} and the eigenvalue is $\frac{1}{\lambda}$ provided $\lambda \neq 0$.
[3 marks]
ii. Also show that \mathbf{x} is an eigenvector of A^{2} and the eigenvalue is λ^{2}. [3 marks]

