UNIVERSITY OF SWAZILAND5SUPPLEMENTARY EXAMINATION 2011/2012

B.A.S.S. /BEd. /BEng. /BSc. II

TITLE OF PAPER	:	LINEAR ALGEBRA
COURSE NUMBER	:	M 220
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF
		<u>SEVEN</u> QUESTIONS.
		2. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

55

1. (a) Use Gaussian elimination to solve the linear system

 $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

(b) Express the matrix

as a product of elementary matrices.

QUESTION 2

2. (a) Consider the linear system

$-x_1$	+	$3x_2$	+	$2x_3$	=	-8		
$3x_1$	+	$3x_2$	+	αx_3	==	eta		(1)
x_1			+	x_3	=	2		

- i. Find values of α and β for which the linear system (1) has;
 - A. no solutions,
 - B. a unique solution,
 - C. infinitely many solutions. [10 marks]
- (b) Find all real numbers x and y such that

 $\begin{vmatrix} 0 & y & x \\ x & 0 & y \\ x & y & 0 \end{vmatrix} = 0$

[5 marks]

[5 marks]

(c) Let $A = (a_{ij})$ be a 4×4 matrix with

$$a_{ij} = \begin{cases} 0 & \text{if } i > j, \\ j - i + 1 & \text{if } i \le j. \end{cases}$$

Write down A explicitly.

Is A invertible? Justify your answer.

56

[12 marks]

[8 marks]

- 3. (a) Write down the subspace test for determining whether or not a non-empty set W is a subspace of a vector space V. [4 marks]
 - (b) Determine whether or not the following subsets are subspaces. Justify your answers.
 - i. $U = \{(x, 0, y) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}$ in \mathbb{R}^3 . [4 marks]
 - ii. $U = \{p(x) \in P_1 : p' \equiv 0\}$ in the set P_1 of all polynomials of degree at most 1. [4 marks]
 - iii. $U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad bc = 0 \right\}$ in the set M_{22} of all of all 2×2 matrices. [4 marks]

iv.
$$U = \{(a, b, c, d) \in \mathbb{R}^4 : a - b + c - d = 0\}$$
 in \mathbb{R}^4 . [4 marks]

QUESTION 4

4.	(a)	Let $S = \{$	$\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n\}$	be a set of vector	rs in a	. vector space V .
----	-----	--------------	---	--------------------	---------	----------------------

- i. Explain the statement "S spans V". [2 marks]
- ii. What does it mean to say that S is linearly independent in V? [2 marks]
- iii. What does it mean to say that S is a basis for V. [2 marks]
- (b) Consider the set $S := \{(1,2,0), (1,2,3), (6,5,4)\}$ of vectors in \mathbb{R}^3 .
 - i. Determine whether or not S spans \mathbb{R}^3 .
 - ii. Determine whether or not S is linearly independent in \mathbb{R}^3 . [2 marks]
 - iii. Is S a basis for \mathbb{R}^3 ? Justify your answer. [2 marks]
- (c) i. Define the row space of an $m \times n$ matrix.
 - ii. Find a basis for the row space of the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & 3 \\ 1 & 2 & 1 & 2 & 4 \\ -1 & -2 & 1 & 0 & -2 \end{bmatrix}$$

[4 marks]

[4 marks]

[2 marks]

57

natrix

- 5. (a) i. Let U and V be vector spaces, and let $T: U \to V$ be a linear transformation. A. Define the image of T. [2 marks]
 - B. Define the kernel of T. [2 marks]
 - C. Define the rank and nullity of T, and state carefully a theorem that relates the two. [4 marks]
 - ii. Are the following linear maps? Justify your answers.
 - A. $T : \mathbb{R}^2 \to P_1$ with T(a, b) = ax + b. [4 marks]
 - B. $T : \mathbb{R}^2 \to \mathbb{R}^2$ with T(x, y) = (x + y, xy). [4 marks]
 - C. $T: P_2 \rightarrow P_1$ with $T(ax^2 + bx + c) = 2ax + b.$ [4 marks]

QUESTION 6

- 6. (a) Determine whether or not the following are inner products on the given vector spaces. Justify your answers.
 - i.

ii.

$$\langle A, B \rangle = \operatorname{Tr}(B^T A)$$

on the set M_{22} of all 2×2 matrices with standard addition and scalar multiplication for matrices. [6 marks]

$$\langle p,q\rangle = \int_0^1 x p(x) q(x) dx$$

on the set P_2 of all polynomials of degree at most 2 with standard addition and scalar multiplication. [6 marks]

(b) Consider the inner product space consisting of the vector space \mathbb{R}^2 together with an inner product defined by

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{v}^T \mathbf{u}$$

- i. Define the norm $\|\mathbf{u}\|$ of a vector $\mathbf{u} \in \mathbb{R}^2$ with respect to this inner product. [2 marks]
- ii. Compute $\|\mathbf{u}\|$ when $\mathbf{u} = \begin{bmatrix} 2\\1 \end{bmatrix}$. [2 marks]
- iii. Verify the Cauchy-Schwarz inequality for the vectors

$$\mathbf{u} = \begin{bmatrix} 2\\1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1\\1 \end{bmatrix}$

in this inner product space.

[4 marks]

- 7. (a) Given an $n \times n$ matrix A, what is meant by "an eigenvector and an eigenvalue of A"? [4 marks]
 - (b) For the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$

[10 marks] find its eigenvalues and corresponding eigenvectors.

- (c) Let λ be an eigenvector of a square matrix A with corresponding eigenvector x.
- i. Show that x is also an eigenvector of A^{-1} and the eigenvalue is $\frac{1}{\lambda}$ provided [3 marks]
 - ii. Also show that x is an eigenvector of A^2 and the eigenvalue is λ^2 . [3 marks]