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QUESTION 1 

1. (a) Use Gaussian elimination to solve the linear system 

x + 3y + 4z - 13 
x + 2y + 3z = 9 
x + 3y + 5z = -11 

[8 marks] 

(b) Express the matrix 

A = [~ ~ ~l 
as a product of elementary matrices. [12 marks] 

QUESTION 2 

2. (a) Consider the linear system 

-Xl + 3X2 + 2X3 -8 
3XI + 3X2 + aX3 {3 (1) 

Xl + X3 = 2 

i. Find values of a and f3 for which the linear system (1) has; 

A. no solutions, 

B. a unique solution, 

C. infinitely many solutions. [10 marks] 

(b) Find all real numbers X and y such that 

o y X 

X 0 Y =0 
x y 0 

(c) Let A (aij) be a 4 x 4 matrix with 

[5 marks] 

{ 
o 
j - i + 1 

if 
ifi::; j. 

i > j, 

Write down A explicitly. 

Is A invertible? Justify your answer. [5 marks] 



QUESTION 3 

3. 	 (a) Write down the subspace test for determining whether or not a non-empty set 
W is a subspace of a vector space V. [4 marks] 

(b) Determine whether or not the following subsets are subspaces. Justify your an
swers. 

i. 	U = {(x,O,y) E JR3: x,y E JR} in JR3. [4 marks] 
ii. 	U = {p(x) E PI : pi == O} in the set PI of all polynomials of degree at 

most 1. [4 marks] 

iii. U = { [~ !] :ad be = o} in the set M22 of all of all 2 x 2 . 

matrices. [4 marks] 
iv. 	U={(a,b,e,d)EJR4: a b+e-d=0}inJR4. [4 marks] 

QUESTION 4 

4. (a) Let 8 {UI' U2,"" Un} be a set of vectors in a vector space V. 

i. Explain the statement "8 spans V". [2 marks] 
it What does it mean to say that 8 is linearly independent in V? [2 marks] 
iii. 	What does it mean to say that 8 is a basis for V. [2 marks] 

(b) Consider the set 8 := {(I, 2,0), (1,2,3), (6,5, 4)} of vectors in JR3. 

i. 	Determine whether or not 8 spans JR3. [4 marks] 
ii. 	 Determine whether or not 8 is linearly independent in JR3. [2 marks] 

iii. Is 8 a basis for JR3? Justify your answer. 	 [2 marks] 

(c) i. 	Define the row space of an m x n matrix. [2 marks] 
ii. 	 Find a basis for the row space of the matrix 

A=[i ; ~; !]
-1 -2 1 ° -2 

[4 marks] 



QUESTION 5 

5. (a) i. Let U and V be vector spaces, and let T : U -+ V be a linear transformation. 

A. Define the image of T. 	 [2 marks] 

B. Define the kernel of T. 	 [2 marks] 

C. Define the rank and nullity of T, and state carefully a theorem that relates 
the two. [4 marks] 

ii. Are the following linear maps? Justify your answers. 

A. T:]R2 -+ PI with T(a, b) = ax + b. 	 [4 marks] 

B. T:]R2 -+ Ii? with T(x, y) = (x + y, xy). 	 [4 marks] 

C. T: P2 -+ PI with T(ax2+ bx + c) = 2ax + b. 	 [4 marks] 

QUESTION 6 

6. 	 (a) Determine whether or not the following are inner products on the given vector 
spaces. Justify your answers. 

i. 
(A, B) = Tr(BT A) 

on the set M22 of all 2 x 2 matrices with standard addition and scalar 
multiplication for matrices. [6 marks] 

ii. 

(p,q) = 11 xp(x)q(x)dx 

on the set P2 of all polynomials of degree at most 2 with standard addition 
and scalar multiplication. [6 marks] 

(b) Consider the inner product space consisting of the vector space ]R2 together with 
an inner product defined by 


(u, v) vTu 


i. 	Define the norm lIull of a vector u E ]R2 with respect to this inner 
product. [2 marks] 

it Compute Ilull when u= [~]. 	 [2 marks] 

iii. Verify the Cauchy-Schwarz inequality for the vectors 

u = [i] and v U] 
in this inner product space. 	 [4 marks] 



QUESTION 7 


7. 	 (a) Given an n x n matrix A, what is meant by "an eigenvector and an eigenvalue of 
A"? [4 marks] 

(b) For the matrix 

A=[34 -34] 
find its eigenvalues and corresponding eigenvectors. [10 marks] 

(c) Let ). be an eigenvector of a square matrix A with corresponding eigenvector x. 

i. 	Show that x is also an eigenvector of A-1 and the eigenvalue is ~ provided 

). "# O. [3 marks] 
ii. 	 Also show that x is an eigenvector of A2 and the eigenvalue is ).2. [3 marks] 


