University of Swaziland

Final Examination, 2011/2012

BSc II, Bass II, BEd II

Title of Paper	$:$ Dynamics I
Course Number	$:$ M255
Time Allowed	$:$ Three (3) hours
Instructions	$:$

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

QUESTION 1

The position vector of a moving particle is given by

$$
\overrightarrow{\mathbf{r}}=4 \sin t \hat{\mathbf{i}}+4 \cos t \hat{\mathbf{j}}+(3 t-1) \hat{\mathbf{k}} .
$$

Find
1.1 the velocity vector of the particle,
1.2 the speed of the particle,
1.3 the acceleration vector of the particle,
1.4 the unit tangent vector $\hat{\mathbf{T}}$,
1.5 the curvature κ of the path,
1.6 the radius of curvature R of the path,
1.7 the unit principal normal $\hat{\mathbf{N}}$,
1.8 the normal component of acceleration,
1.9 the binormal vector $\hat{\mathbf{B}}$.

QUESTION 2

2.1 Let $\phi(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$. Show that $\operatorname{grad} \phi$ is the unit vector in the direction of $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$.
2.2 Let $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ have continuous second order partial derivatives. Prove that

$$
\operatorname{curl}(\operatorname{grad} \phi)=\overrightarrow{\mathbf{0}} .
$$

2.3 Let $\overrightarrow{\mathbf{F}}(x, y, z)=2 x y^{2} \hat{\mathbf{i}}+\left(2 x^{2} y+2 y z^{2}\right) \hat{\mathbf{j}}+2 y^{2} z \hat{\mathbf{k}}$.
2.3.1 Verify that curl $\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{0}}$.
2.3.2 Find $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\overrightarrow{\mathbf{F}}=\operatorname{grad} \phi$.

QUESTION 3

3.1 Suppose a point A has position vector $\overrightarrow{\mathbf{a}}$ and a point B has position vector $\overrightarrow{\mathbf{b}}$. Show that the position vector $\overrightarrow{\mathbf{r}}$ of the point R, that divides the line $A B$ in the ratio $\alpha: \beta$, is given by

$$
\overrightarrow{\mathbf{r}}=\frac{\beta \overrightarrow{\mathbf{a}}+\alpha \overrightarrow{\mathbf{b}}}{\alpha+\beta} .
$$

Hence deduce the midpoint formula.
3.2 Show that $\overrightarrow{\mathbf{A}}=\left(6 x y^{2}-y^{3}\right) \hat{\mathbf{i}}+\left(6 x^{2} y-3 x y^{2}\right) \hat{\mathbf{j}}$ is a conservative vector field. Hence, evaluate the integral

$$
\int_{(1,2)}^{(3,4)} \overrightarrow{\mathbf{A}} \cdot d \overrightarrow{\mathbf{r}} .
$$

3.3 For what values of a are the vectors $\overrightarrow{\mathbf{A}}=a \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{B}}=2 a \hat{\mathbf{i}}+a \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ perpendicular?

QUESTION 4

4.1 Two points A and B are at a distance d apart. A particle starts from A and moves with initial velocity u and uniform acceleration a in the direction $\overrightarrow{A B}$. A second particle starts out at the same time from B and moves with initial velocity $2 u$ in the direction $\overrightarrow{B A}$ under uniform retardation a.
4.1.1 Show that the particles collide at a time $\frac{d}{3 u}$ from the beginning of motion.
4.1.2 Show that for the particles to collide before the second particle returns to B, the inequality

$$
a d<12 u^{2}
$$

must hold.
4.2 A car with initial speed u accelerates uniformly over a distance of $2 s$ which it covers in time t_{1}. It is then stopped by being retarded uniformly to rest over a distance s, which it covers in time t_{2}. Show that

$$
\frac{u}{2 s}=\frac{2}{t_{1}}-\frac{1}{t_{2}}
$$

QUESTION 5

5.1 In cylindrical coordinates (r, θ, z), the position vector of an arbitrary point (x, y, z) is given by

$$
\overrightarrow{\mathbf{R}}=r \cos \theta \hat{\mathbf{i}}+r \sin \theta \hat{\mathbf{j}}+z \hat{\mathbf{k}} .
$$

Show that in this coordinate system, the acceleration of a particle with position vector $\overrightarrow{\mathbf{R}}$ is given by

$$
\overrightarrow{\mathbf{a}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{\mathbf{r}}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \hat{\boldsymbol{\theta}}+\ddot{z} \hat{\mathbf{k}} .
$$

5.2 A particle of unit mass is thrown vertically upwards with initial speed V. The air resistance at speed v is $k v^{2}$ per unit mass where k is a constant. Show that the maximum height reached, H, is given by

$$
H=\frac{1}{2 k} \ln \left(\frac{g+k V^{2}}{g}\right) .
$$

QUESTION 6

6.1 A particle is projected, under gravity, from a point O, which is at height h above sea level, with a velocity $\overrightarrow{\mathbf{v}}$ of magnitude $v=|\overrightarrow{\mathbf{v}}|=\frac{3}{2} \sqrt{g h}$. Find the two possible angles of projection if the particle strikes the sea at horizontal distance $3 h$ from O.
6.2 Verify Green's theorem in the plane for the vector field $\overrightarrow{\mathbf{F}}(x, y)=\left(x^{2}-x y^{3}\right) \hat{\mathbf{i}}+\left(y^{2}-2 x y\right) \hat{\mathbf{j}}$ where the curve C is the boundary of the square with vertices $(0,0),(2,0),(2,2)$ and $(0,2)$ oriented in the counterclockwise direction.

QUESTION 7

7.1 Show, by means of the substitution $r=1 / u$, that the equation of a particle in a central force field is

$$
\frac{d^{2} u}{d \theta^{2}}+u=-\frac{f(1 / u)}{m h^{2} u^{2}}
$$

7.2 Under the influence of a central force, a particle moves in a circular orbit through the origin. Find the law of force.

