FINAL EXAMINATIONS 2011/2012
BSc. / BEd. / B.A.S.S. III

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) Consider the iterative schemes:

$$
x_{n+1}=\frac{1}{5}\left(x_{n}^{3}+1\right), x_{n+1}=\left(5 x_{n}-1\right)^{1 / 3}, x_{n+1}=\sqrt{\frac{5 x_{n}-1}{x_{n}}}, \quad n \geq 0
$$

for solving the non-linear equation $x^{3}-5 x+1=0$ in the interval $[0,1]$.
i. Which one is suitable for approximating the solution of the given equation?
ii. Starting from $x_{0}=1$, compute the fourth approximation x_{4}.
(b) Show that the iteration scheme

$$
\alpha_{n+1}=\frac{\alpha_{n}^{2}-a \alpha_{n}+a^{2}+5 a}{\alpha_{n}+5}
$$

converges to the fixed point a quadratically (i.e order of convergence is 2) for all $a \neq-5$.
[5 Marks]
(c) Show that the iterative scheme

$$
x_{n+1}=\frac{\left(3 A-x_{n}^{2}\right) x_{n}}{2 A}, \quad A>0, n \geq 0
$$

converges to \sqrt{A} and its rate of convergence is quadratic.

QUESTION 2

2. (a) Consider the function $f(x)=x^{3}+4 x^{2}-10$.
i. Show that $f(x)$ has exactly one root in $[1,2]$.
[6 Marks]
ii. By performing 4 iterations of the bisection method, show that this root lies in the interval [1.3125, 1.375].
iii. How many iterations would be required to locate this zero to a tolerance of 10^{-5} ?
[6 Marks]

QUESTION 3

3. (a) Convert the decimal 9.7 into its binary equivalent.
(b) Convert the binary $(0 . \overline{10})_{2}$ into its decimal equivalent.
(c) Determine the machine representation in single precision on a 32 -bit word length computer (Marc-32) for the decimal number -285.75

QUESTION 4

4. (a) Transform $\int_{-3}^{3} \frac{1}{t^{2}+1} d t$ to an integral of the form $\int_{-1}^{1} f(x) d x$
[6 Marks]
(b) Find the coefficients below for the three-point Gaussian quadrature rule:

$$
\int_{-1}^{1} f(x) d x \approx a f\left(-\sqrt{\frac{3}{5}}\right)+b f(0)+c f\left(+\sqrt{\frac{3}{5}}\right)
$$

(c) Estimate the integral from (a) using this rule. Express your answer as a fraction. [6 Marks]

QUESTION 5

5. (a) Find the $L U$ factorisation of the matrix A in which the diagonal elements of L are 1 for

$$
A=\left[\begin{array}{rrrr}
4 & -2 & 0 & 0 \\
-2 & 2 & 2 & 0 \\
0 & 2 & 8 & -6 \\
0 & 0 & -6 & 10
\end{array}\right]
$$

(b) Use the $L U$ factorisation in (a) to find x such that

$$
A x=\left[\begin{array}{r}
2 \\
0 \\
-8 \\
16
\end{array}\right]
$$

QUESTION 6

6. (a) Consider the points $x_{0}=1, x_{1}=1.5, x_{2}=2.5$ and for a function $f(x)$, the divided differences are $f\left[x_{2}\right]=5, f\left[x_{1}, x_{2}\right]=15, f\left[x_{0}, x_{1}, x_{2}\right]=35$. Use this information to construct the complete divided differences table for the given points.
[8 Marks]
(b) Consider the integral $\int_{0}^{1} \sin \left(\frac{\pi x^{2}}{2}\right) d x$. Suppose we wish to integrate it numerically with an error of magnitude less than 10^{-3}. What width h is needed if we wish to use the composite Trapezoid rule?
[6 marks]
(c) Evaluate $\int_{2}^{6} \frac{x}{1+x} d x$ using the Simpson rule with $h=1$ and calculate the error against the exact value of the integral to four decimal places.

QUESTION 7

(a) Suppose that $f(-1)=3, f(0)=4$ and $f(2)=5$. Find the Lagrange interpolating polynomial which interpolates these values, and use it to estimate $f^{\prime}(0)$.
(b) Convert the 32-bit floating-point number 01000101001000100011101000000000 to its decimal equivalent.
(c) Given the function $f(h)=\sqrt{9-h}-3$
(i) find a suitable function $g(h)$ that has been reformulated to be algebraically equivalent to $f(h)$ with the aim of avoiding loss of significance error.
(ii) Compare the results of calculating $f(0.0001)$ and $g(0.0001)$ using six digits and chopping.
[3 marks]

