UNIVERSITY OF SWAZILAND

٩

SUPPLEMENTARY EXAMINATIONS 2012

BSc. / BEd. / B.A.S.S. III

TITLE OF PAPER	:	NUMERICAL ANALYSIS I
COURSE NUMBER	:	M 311
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER ANY FIVE QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) Convert the following decimal numbers to their binary equivalent

i.	0.6	[5 Marks]
ii.	$\frac{17}{16}$	[5 Marks]

(b) Convert the following binary numbers to their decimal equivalent

ii. (0.00011)₂ [5 Marks]

QUESTION 2

2. (a) Use 3 iterations of the secant method to estimate the root of

$$f(x) = \ln x - e^x + 3$$

with starting points $x_0 = 1$ and $x_1 = 2$

(b) Let $p_2(x)$ be the quadratic polynomial interpolating f(x) at (0, f(0)), (h, f(h)) and (2h, f(2h)).

(i) Write down the Lagrange representation of $p_2(x)$. [7 marks]

(ii) By integrating $p_2(x)$ between 0 and 3*h*, derive the numerical integration rule that approximates $I = \int_0^{3h} f(x) dx$; that is, show that

$$I \approx \frac{3h}{4} \left[f(0) + 3f(2h) \right].$$

[7 marks]

QUESTION 3

3. (a) Consider the iterative scheme

$$x_{n+1} = \frac{12}{1+x_n} \qquad n \ge 0.$$

i. Find the positive fixed point, s, of the scheme. [2 marks]

ii. Prove that the scheme convergences to s for sufficiently close x_0 ; determine the order and corresponding asymptotic error constant for this method. [8 marks]

(b) Given the data

(i) construct a divided difference table.

[5 marks]

(ii) write down the Newton form of the interpolating polynomial. [5 marks]

[6 marks]

QUESTION 4

4. (a) Use the two-point Gaussian Quadrature rule,

$$\int_{-1}^{1} f(x) \ dx \approx f\left(\frac{-\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right),$$

to approximate the integral

$$\int_0^1 x^2 e^{-x} dx$$

and compare your result against the exact value of the integral. [10 marks]

(b) Evaluate the integral $\int_0^1 xe^{-x} dx$ analytically correct to four decimal places. Use the trapezoidal rule with h = 0.2 and the Simpson's rule with h = 0.25 to compute the same integral. Compare the errors. [10 marks]

QUESTION 5

- 5. Given the points (-2,-1),(-1,3),(0,1),(1,-1) and (2,3)
 - (a) Construct a forward difference table.

(b) Prove that the polynomial of degree ≤ 4 that goes through the points in Newton form is

$$x^3 - 3x + 1$$

[10 marks]

[10 marks]

QUESTION 6

- 6. Consider the function $f(x) = x^3 + 4x^2 10$.
 - (a) Show that f(x) has exactly one root in [1, 2]. [6 marks]
 - (b) By performing 4 iterations of the bisection method, show that this root lies in the interval [1.3125, 1.375]. [8 marks]
 - (c) How many iterations would be required to locate this zero to a tolerance of 10⁻⁵? [6 marks]

QUESTION 7

7. Given the tridiagonal matrix

۰,

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

determine the LU decomposition of A, and hence solve the system Ax = b where $b = [2, 1, 1, 0]^T$ [20 marks]