SUPPLEMENTARY EXAMINATIONS 2012

BSc. / BEd. / B.A.S.S. III

TITLE OF PAPER	$:$	NUMERICAL ANALYSIS I
COURSE NUMBER	$:$	M 311
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) Convert the following decimal numbers to their binary equivalent
i. 0.6
[5 Marks]
ii. $\frac{17}{16}$
[5 Marks]
(b) Convert the following binary numbers to their decimal equivalent
i. $(11011.01)_{2}$
ii. $(0.0 \overline{0011})_{2}$
[5 Marks]

QUESTION 2

2. (a) Use 3 iterations of the secant method to estimate the root of

$$
f(x)=\ln x-e^{x}+3
$$

with starting points $x_{0}=1$ and $x_{1}=2$
(b) Let $p_{2}(x)$ be the quadratic polynomial interpolating $f(x)$ at $(0, f(0)),(h, f(h))$ and ($2 h, f(2 h)$).
(i) Write down the Lagrange representation of $p_{2}(x)$.
(ii) By integrating $p_{2}(x)$ between 0 and $3 h$, derive the numerical integration rule that approximates $I=\int_{0}^{3 h} f(x) d x$; that is, show that

$$
I \approx \frac{3 h}{4}[f(0)+3 f(2 h)] .
$$

QUESTION 3

3. (a) Consider the iterative scheme

$$
x_{n+1}=\frac{12}{1+x_{n}} \quad n \geq 0
$$

i. Find the positive fixed point, s, of the scheme.
ii. Prove that the scheme convergences to s for sufficiently close x_{0}; determine the order and corresponding asymptotic error constant for this method.
(b) Given the data

$$
\begin{array}{c|ccccc}
x & 0 & 1 & 3 & 2 & 5 \\
\hline f(x) & 2 & 1 & 5 & 6 & -183
\end{array}
$$

(i) construct a divided difference table.
(ii) write down the Newton form of the interpolating polynomial.

QUESTION 4

4. (a) Use the two-point Gaussian Quadrature rule,

$$
\int_{-1}^{1} f(x) d x \approx f\left(\frac{-\sqrt{3}}{3}\right)+f\left(\frac{\sqrt{3}}{3}\right)
$$

to approximate the integral

$$
\int_{0}^{1} x^{2} e^{-x} d x
$$

and compare your result against the exact value of the integral.
[10 marks]
(b) Evaluate the integral $\int_{0}^{1} x e^{-x} d x$ analytically correct to four decimal places. Use the trapezoidal rule with $h=0.2$ and the Simpson's rule with $h=0.25$ to compute the same integral. Compare the errors.
[10 marks]

QUESTION 5

5. Given the points $(-2,-1),(-1,3),(0,1),(1,-1)$ and $(2,3)$
(a) Construct a forward difference table.
[10 marks]
(b) Prove that the polynomial of degree ≤ 4 that goes through the points in Newton form is

$$
x^{3}-3 x+1
$$

[10 marks]

QUESTION 6

6. Consider the function $f(x)=x^{3}+4 x^{2}-10$.
(a) Show that $f(x)$ has exactly one root in [1, 2].
[6 marks]
(b) By performing 4 iterations of the bisection method, show that this root lies in the interval [1.3125, 1.375].
[8 marks]
(c) How many iterations would be required to locate this zero to a tolerance of 10^{-5} ? marks]

QUESTION 7

7. Given the tridiagonal matrix

$$
A=\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

determine the $L U$ decomposition of A, and hence solve the system $A x=b$ where $b=[2,1,1,0]^{T}$ [20 marks]

