UNIVERSITY OF SWAZILAND

5.

٣

FINAL EXAMINATIONS 2011/2012

B.Sc. / B.Ed. / B.A.S.S.III

TITLE OF PAPER	:	VECTOR ANALYSIS
COURSE NUMBER	:	M312
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER ANY FIVE OUESTIONS
SPECIAL REQUIREMENTS	:	NONE
¥		

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) (i) Find the point of intersection of the lines

$$x = 2t + 1,$$
 $y = 3t + 2,$ $z = 4t + 3$

and

$$x = s + 2,$$
 $y = 2s + 4,$ $z = -4s - 1,$

and then find the plane determined by these lines.

- (ii) Find the distance from the point (0, -1, 0) to the plane 2x + y + 2z = 4.[5]
- (b) (i) The graph y = f(x) in the *xy*-plane automatically has the parametrization x = x, y = f(x), and the vector formula $\mathbf{r}(x) = x\hat{\mathbf{i}} + (f(x))\hat{\mathbf{j}}$. Use this formula to show that if f is a twice differentiable function of x, then

$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}.$$
[7]

[6]

(ii) Use the formula for κ in (i) to find the curvature of $y = \ln(\cos x), \quad -\pi/2 \le x \le \pi/2.$ [2]

QUESTION 2

- (a) Show that $\mathbf{n}(t) = -g'(t)\hat{\mathbf{i}} + f'(t)\hat{\mathbf{j}}$ and $-\mathbf{n}(t) = g'(t)\hat{\mathbf{i}} f'(t)\hat{\mathbf{j}}$ are both normals to the curve $\mathbf{r}(t) = f(t)\hat{\mathbf{i}} + g(t)\hat{\mathbf{j}}$ at the point (f(t), g(t)). Hence find a unit normal, $\hat{\mathbf{N}}$, for the curve $\mathbf{r}(t) = \sqrt{4-t^2}\hat{\mathbf{i}} + t\hat{\mathbf{j}}$, $-2 \le t \le 2$. [6]
- (b) Integrate $f(x, y, z) = 2x 6y^2 + 2z$ over the line segment C joining the points (2,2,2) and (3,3,3). [6]
- (c) Show that ydx + xdy + 4dz is exact and evaluate the integral

$$\int_{(2,2,2)}^{(3,4,0)} y \mathrm{d}x + x \mathrm{d}y + 4 \mathrm{d}z.$$
[8]

QUESTION 3

- (a) Give a formula F = M(x, y)î + N(x, y)ĵ for the vector field in the plane with the properties that F = 0 at the origin and that at any other point (a, b) in the plane, F is tangent to the circle x² + y² = a² + b² and points in the clockwise direction, with magnitude |F| = √a² + b². [8]
- (b) Verify the divergence theorem for $\mathbf{A} = (2x z)\mathbf{\hat{i}} + x^2 y\mathbf{\hat{j}} xz^2 \mathbf{\hat{k}}$ taken over the region bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. [12]

QUESTION 4

- (a) By any method, find the outward flux of the field F = (x + y)î + (x² + 2y + sin z)ĵ + (e^x + √y)k across the boundary of the region D bounded below by the plane z = 0, laterally by the circular cylinder x² + (y 3)² = 9, and above by the paraboloid z = x² + y². [12]
- (b) By any method, find the circulation of the field F = (x² + y²)î + (x + y)ĵ around the triangle with vertices (1,0), (0,1), (-2,0) traversed in the counterclockwise direction.

QUESTION 5

- (a) If $\mathbf{F} = y\hat{\mathbf{i}} + (x 2xz)\hat{\mathbf{j}} xy\hat{\mathbf{k}}$, evaluate $\iint_{S} (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} \, \mathrm{d}S$, where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the xy-plane. [12]
- (b) Verify that the parametric equations

$$x = \rho^2 \cos \theta, \quad y = \rho^2 \sin \theta, \quad z = \rho$$

could be used to represent the surface $x^2 + y^2 - z^4 = 0$. Hence compute the unit normal to this surface at any point. [8]

QUESTION 6

- (a) The path of a highway and an exit ramp are superimposed on a rectangular coordinate system such that the highway coincides with the x-axis. The exit ramp begins at the origin O. After following the graph of $y = -x^4/4$ from O to the point P(1, -1/4), the path follows the arc of a circle in such a way that the ramp is *continuous, smooth*, and has *continuous curvature*. Find the equation of this circle. [12]
- (b) Find the scale factors h₁, h₂, and h₃ in cylindrical and in spherical coordinates. Hence find the line element ds² and the volume element dV (in cylindrical and in spherical coordinates).

QUESTION 7

(a) Find the arc length parameter along the curve $\mathbf{r}(t) = (e^t \cos t)\mathbf{\hat{i}} + (e^t \sin t)\mathbf{\hat{j}} + e^t \mathbf{\hat{k}}$, from the point where t = 0, by evaluating the integral

$$s = \int_{\tau=0}^{t} |\mathbf{v}(\tau)| \mathrm{d}\tau.$$

Then find the length of the portion of the curve in the closed interval $-\ln 4 \le t \le 0.$ [6]

(b) Evaluate:

(i)
$$\int_0^2 \frac{x^2}{\sqrt{2-x}} dx$$
; and [3]

(ii)
$$\int_0^\infty \frac{y}{1+y^4} \mathrm{d}y.$$
 [3]

(c) Use recurrence relations to show that

$$2J_0''(x) + J_0(x) - J_2(x) = 0,$$

where $J_n(x)$ is the Bessel function of the first kind of order n. [8]

END OF EXAMINATION