UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2011/2012

B.Sc. / B.Ed. / B.A.S.S.III

TITLE OF PAPER	$:$	VECTOR ANALYSIS
COURSE NUMBER	$:$	M312
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
		2. ANSWER ANY FIVE QUESTIONS
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) (i) Find the point of intersection of the lines

$$
x=2 t+1, \quad y=3 t+2, \quad z=4 t+3
$$

and

$$
x=s+2, \quad y=2 s+4, \quad z=-4 s-1,
$$

and then find the plane determined by these lines.
(ii) Find the distance from the point $(0,-1,0)$ to the plane $2 x+y+2 z=4$ [5]
(b) (i) The graph $y=f(x)$ in the $x y$-plane automatically has the parametrization $x=x, y=f(x)$, and the vector formula $\mathbf{r}(x)=x \hat{\mathbf{i}}+(f(x)) \hat{\mathbf{j}}$. Use this formula to show that if f is a twice differentiable function of x, then

$$
\begin{equation*}
\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+\left(f^{\prime}(x)\right)^{2}\right]^{3 / 2}} . \tag{7}
\end{equation*}
$$

(ii) Use the formula for κ in (i) to find the curvature of $y=\ln (\cos x), \quad-\pi / 2 \leq$ $x \leq \pi / 2$.

QUESTION 2

(a) Show that $\mathbf{n}(t)=-g^{\prime}(t) \hat{\mathbf{i}}+f^{\prime}(t) \hat{\mathbf{j}}$ and $-\mathbf{n}(t)=g^{\prime}(t) \hat{\mathbf{i}}-f^{\prime}(t) \hat{\mathbf{j}}$ are both normals to the curve $\mathbf{r}(t)=f(t) \hat{\mathbf{i}}+g(t) \hat{\mathbf{j}}$ at the point $(f(t), g(t))$. Hence find a unit normal, $\hat{\mathbf{N}}$, for the curve $\mathbf{r}(t)=\sqrt{4-t^{2}} \hat{\mathbf{i}}+t \hat{\mathbf{j}}, \quad-2 \leq t \leq 2$.
(b) Integrate $f(x, y, z)=2 x-6 y^{2}+2 z$ over the line segment C joining the points $(2,2,2)$ and $(3,3,3)$.
(c) Show that $y \mathrm{~d} x+x \mathrm{~d} y+4 \mathrm{~d} z$ is exact and evaluate the integral

$$
\int_{(2,2,2)}^{(3,4,0)} y \mathrm{~d} x+x \mathrm{~d} y+4 \mathrm{~d} z
$$

QUESTION 3

(a) Give a formula $\mathbf{F}=M(x, y) \hat{\mathbf{i}}+N(x, y) \hat{\mathbf{j}}$ for the vector field in the plane with the properties that $\mathbf{F}=\mathbf{0}$ at the origin and that at any other point (a, b) in the plane, \mathbf{F} is tangent to the circle $x^{2}+y^{2}=a^{2}+b^{2}$ and points in the clockwise direction, with magnitude $|\mathbf{F}|=\sqrt{a^{2}+b^{2}}$.
(b) Verify the divergence theorem for $\mathbf{A}=(2 x-z) \hat{\mathbf{i}}+x^{2} y \hat{\mathbf{j}}-x z^{2} \hat{\mathbf{k}}$ taken over the region bounded by $x=0, x=1, y=0, y=1, z=0, z=1$.

QUESTION 4

(a) By any method, find the outward flux of the field $\mathbf{F}=(x+y) \hat{\mathbf{i}}+\left(x^{2}+2 y+\right.$ $\sin z) \hat{\mathbf{j}}+\left(\mathrm{e}^{x}+\sqrt{y}\right) \hat{\mathbf{k}}$ across the boundary of the region D bounded below by the plane $z=0$, laterally by the circular cylinder $x^{2}+(y-3)^{2}=9$, and above by the paraboloid $z=x^{2}+y^{2}$.
(b) By any method, find the circulation of the field $\mathbf{F}=\left(x^{2}+y^{2}\right) \hat{\mathbf{i}}+(x+y) \hat{\mathbf{j}}$ around the triangle with vertices $(1,0),(0,1),(-2,0)$ traversed in the counterclockwise direction.

QUESTION 5

(a) If $\mathbf{F}=y \hat{\mathbf{i}}+(x-2 x z) \hat{\mathbf{j}}-x y \hat{\mathbf{k}}$, evaluate $\iint_{S}(\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} \mathrm{d} S$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the $x y$-plane.
(b) Verify that the parametric equations

$$
x=\rho^{2} \cos \theta, \quad y=\rho^{2} \sin \theta, \quad z=\rho
$$

could be used to represent the surface $x^{2}+y^{2}-z^{4}=0$. Hence compute the unit normal to this surface at any point.

QUESTION 6

(a) The path of a highway and an exit ramp are superimposed on a rectangular coordinate system such that the highway coincides with the x-axis. The exit ramp begins at the origin O. After following the graph of $y=-x^{4} / 4$ from O to the point $P(1,-1 / 4)$, the path follows the arc of a circle in such a way that the ramp is continuous, smooth, and has continuous curvature. Find the equation of this circle.
(b) Find the scale factors h_{1}, h_{2}, and h_{3} in cylindrical and in spherical coordinates. Hence find the line element ds^{2} and the volume element dV (in cylindrical and in spherical coordinates).

QUESTION 7

(a) Find the arc length parameter along the curve $\mathbf{r}(t)=\left(e^{t} \cos t\right) \hat{\mathbf{i}}+\left(e^{t} \sin t\right) \hat{\mathbf{j}}+e^{t} \hat{\mathbf{k}}$, from the point where $t=0$, by evaluating the integral

$$
s=\int_{\tau=0}^{t}|\mathbf{v}(\tau)| \mathrm{d} \tau
$$

Then find the length of the portion of the curve in the closed interval $-\ln 4 \leq$ $t \leq 0$.
(b) Evaluate:
(i) $\int_{0}^{2} \frac{x^{2}}{\sqrt{2-x}} \mathrm{~d} x$; and
(ii) $\int_{0}^{\infty} \frac{y}{1+y^{4}} \mathrm{~d} y$.
(c) Use recurrence relations to show that

$$
2 J_{0}^{\prime \prime}(x)+J_{0}(x)-J_{2}(x)=0,
$$

where $J_{n}(x)$ is the Bessel function of the first kind of order n.

