UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2011/2012

B.Sc. / B.Ed. / B.A.S.S.III

TITLE OF PAPER	$:$	VECTOR ANALYSIS
COURSE NUMBER	$:$	M312
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
SPECIAL REQUIREMENTS	$:$	A. ANSWER ANY FIVE QUESTIONS

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Show that

$$
\beta(m, n)=2 \int_{0}^{\infty} \frac{\sinh ^{2 n-1} \theta}{\cosh ^{2 m+2 n-1} \theta} \mathrm{~d} \theta
$$

Hence, show that

$$
\int_{0}^{\infty} \frac{\sinh ^{p} \theta}{\cosh ^{q} \theta} \mathrm{~d} \theta=\frac{1}{2} \beta\left(\frac{p+1}{2}, \frac{q-p}{2}\right) .
$$

(b) Legendre's differential equation is given by

$$
\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)-2 x P_{n}^{\prime}(x)+n(n+1) P_{n}(x)=0
$$

Using this, or by any other method, prove that

$$
\begin{equation*}
\int_{-1}^{1} P_{m}(x) P_{n}(x) \mathrm{d} x=0, \quad \text { if } m \neq n \tag{10}
\end{equation*}
$$

QUESTION 2

(a) By any method, find the integral of $H(x, y, z)=y z$ over the part of the sphere $x^{2}+y^{2}+z^{2}=16$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$.
(b) Find the work done in moving a particle in the counterclockwise direction once around the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ if the force field is given by $\mathbf{F}=(3 x-4 y) \hat{\mathbf{i}}+$ $(4 x+2 y) \hat{\mathbf{j}}-4 y^{2} \hat{\mathbf{k}}$.
(c) Find out which of the fields given below are conservative. For conservative fields, find a potential function.
(i) $\mathbf{F}=\left(y z^{2}\right) \hat{\mathbf{i}}+\left(x z^{2}\right) \hat{\mathbf{j}}+\left(x^{2} y z\right) \hat{\mathbf{k}}$.
(ii) $\mathbf{F}=\left(e^{x} \sin y\right) \hat{\mathbf{i}}+\left(e^{x} \cos y+\sin z\right) \hat{\mathbf{j}}+(y \cos z) \hat{\mathbf{k}}$.

QUESTION 3

(a) Verify Stokes' theorem for $\mathbf{A}=3 y \hat{\mathbf{i}}-x z \hat{\mathbf{j}}+y z^{2} \hat{\mathbf{k}}$, where S is the surface of the paraboloid $2 z=x^{2}+y^{2}$ bounded by $z=2$ and C is its boundary.
(b) Evaluate $\iint_{S} \mathbf{A} \cdot \hat{\mathbf{n}} \mathrm{~d} S$, where $\mathbf{A}=x y \hat{\mathbf{i}}-x^{2} \hat{\mathbf{j}}+(x+z) \hat{\mathbf{k}}, S$ is that portion of the plane $2 x+2 y+z=6$ included in the first octant, and $\hat{\mathbf{n}}$ is the unit normal to S.

QUESTION 4

(a) Find the plane through $P_{0}(2,1,-1)$ and perpendicular to the line of intersections of the planes $2 x+y-z=3$ and $x+2 y+z=2$.
(b) Find the distance from the point $(3,-1,4)$ to the line $x=4-t, \quad y=$ $3+2 t, \quad z=-5+3 t$.
(c) Find the point of intersection of the lines

$$
x=2 t+1, \quad y=3 t+2, \quad z=4 t+3
$$

and

$$
x=s+2, \quad y=2 s+4, \quad z=-4 s-1
$$

and then find the plane determined by these lines.

QUESTION 5

(a) Let $\mathbf{u}(x, y, z)=x \hat{\mathbf{i}}-y \hat{\mathbf{j}}$ and $\mathbf{v}(x, y, z)=\frac{\mathbf{u}}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}$ be vectors in space.
(i) Compute the divergence and the curl of \mathbf{u} and \mathbf{v}.
(ii) Find the flow lines of \mathbf{u} and \mathbf{v}.
(b) Determine the directional derivative of $\phi(x, y)=100-x^{2}-y^{2}$ at the point $(3,6)$ in the direction of the unit vector $\hat{\mathbf{u}}=a \hat{\mathbf{i}}+b \hat{\mathbf{j}}$.
(c) Find the tangent plane and the normal line to the surface $x^{2} y+x y z-z^{2}=2$ at the point $P_{0}(1,1,3)$.

QUESTION 6

(a) Verify the divergence theorem for $\mathbf{F}=(2 x-z) \hat{\mathbf{i}}+x^{2} y \hat{\mathbf{j}}-x z^{2} \hat{\mathbf{k}}$ taken over the region bounded by $x=2, x=5, y=2, y=5, z=2, z=5$.
(b) Verify Green's theorem in the plane for

$$
\oint_{C}[2 x \mathrm{~d} x-(3 y-x) \mathrm{d} y]
$$

where C is the closed curve (described in the positive direction) of the region bounded by the curves $y=x^{2}$ and $y^{2}=x$.

QUESTION 7

(a) By any method, find the outward flux of the field $\mathbf{F}=\left(6 x^{2}+2 x y\right) \hat{\mathbf{i}}+(2 y+$ $\left.x^{2} z\right) \hat{\mathbf{j}}+\left(4 x^{2} y^{3}\right) \hat{\mathbf{k}}$ across the boundary of the region cut from the first octant by the cylinder $x^{2}+y^{2}=9$ and the plane $z=9$.
(b) By any method, find the circulation of the field $\mathbf{F}=\left(x^{2}+y^{2}\right) \hat{\mathbf{i}}+(x+y) \hat{\mathbf{j}}$ around the triangle with vertices $(1,0),(0,1),(-3,0)$ traversed in the counterclockwise direction.

