University of Swaziland

Final Examination, 2011/12

BSc III, Bass III, BEd III

Title of Paper : Abstract Algebra I
Course Number : M323
Time Allowed : Three (3) hours
Instructions :

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

Question 1

(a) Show that if $(a, s)=1$ and $(b, s)=1$, then $(a b, s)=1$ where $a, b, s \in \mathbb{Z}$.
(b) Give a single numerical example to disprove the following:
"If $a x \equiv b x(\bmod n)$ then $a \equiv b(\bmod n) \forall a, b, n \in \mathbb{Z}$ "
(c) Prove that every subgroup of a cyclic group is cyclic. [10]

Question 2

(a) Solve the following system:

$$
\begin{aligned}
2 x & \equiv 1(\bmod 5) \\
3 x & \equiv 4(\bmod 7)
\end{aligned}
$$

(b) Find the number of generators for the cyclic groups of order 8 and 60 .
(c) Prove that a non-abelian group of order $2 p, p$ prime, contains at least one element of order p.

Question 3

(a) Prove that every cyclic group is abelian.
(b) Let n be a positive integer greater than 1 and let, for $a, b \in \mathbb{Z}$

$$
a R b \Longleftrightarrow a \equiv b(\bmod n) .
$$

Prove that R is an equivalence relation on \mathbb{Z}.
(c) Show that a group G is abelian if and only if $(a b)^{-1}=$ $a^{-1} b^{-1}$.

Question 4

(a) Let

$$
\alpha=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 4 & 1 & 3 & 2 & 7 & 8 & 6
\end{array}\right)
$$

and

$$
\beta=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 5 & 6 & 4 & 1 & 7 & 2 & 3
\end{array}\right)
$$

(i) Express α and β as products of disjoint cycles, and then as products of transpositions. For each of them, say whether it is an even permutation or an odd one,
(ii) Compute $\alpha^{-1}, \beta^{-1} \alpha,(\alpha \beta)^{-1}$.
(b) Find the greatest common divisor of the numbers 616 and 427 and express it in the form

$$
d=616 x+427
$$

for some $x, y \in \mathbb{Z}$.

Question 5

(a) Compute (do not list) the number of elements in each of the cyclic subgroups
(i) $<30>$ of \mathbb{Z}_{42}
(ii) $<15>$ of \mathbb{Z}_{48}
(b) For \mathbb{Z}_{12}, find all the subgroups and give a lattice diagram.
(c)
(i) Find all cosets of $H=\{0,6,12\}$ in \mathbb{Z}_{18}.
(ii) Show that the groups \mathbb{Z}_{6} and S_{3} are not isomorphic.

Question 6

(a) Prove that every finite group of prime order is cyclic. [5]
(b) Show that the set $G=\mathbb{Q}-\{0\}$ with respect to the operation

$$
a * b=\frac{a b}{2}, \quad \forall a, b \in G
$$

is a group.
(c) Prove that if $(a b)^{-1}=a^{-1} b^{-1} \quad \forall a, b \in G$, where G is a group, then G is abelian.

Question 7

(a) If $\varphi: G H$ is an isomorphism of groups and e is the identity of G, then
(i) (e) φ is the identity element in H
(ii) $\left(a^{n}\right) \varphi=[(a) \varphi] \quad \forall n \in \mathbb{Z}^{+}$
(b)
(i) State Lagrange's theorem.
(ii) Using (b) (i) above, or otherwise, show that \mathbb{Z}_{p} has no proper subgroup if p is a prime number.

