UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/2012

BSc. /BEd. /B.A.S.S III

TITLE OF PAPER : REAL ANALYSIS

COURSE NUMBER : M 331

TIME ALLOWED : THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.
2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) If $0<a<b$ then prove that $a^{n}<b^{n}, \forall n \in \mathbb{N}$.
(b) Let S be a set of real numbers. Explain precisely each of the following statements.
i. S is bounded above. [2 marks]
ii. S is bounded below.
iii. S is bounded.
(c) Determine whether the set $S:=\{x \in \mathbb{R}:|2 x+1|>5\}$ is bounded or not.
(d) Let $\alpha>0$ and let $T:=\{\alpha s \in \mathbb{R}: s \in S\}$. Prove that $\sup (T)=\alpha \sup S$.

QUESTION 2

2. (a) Let $\left(x_{n}\right)$ be a sequence of real numbers. Explain precisely each of the following statements.
i. The sequence $\left(x_{n}\right)$ is bounded.
ii. The sequence $\left(x_{n}\right)$ is monotone.
iii. The sequence $\left(x_{n}\right)$ is convergent.
(b) Use your definition in 2(a)iii to prove that the sequence $\left(\frac{1+(-1)^{n}}{n}\right)$ converges to 0.
(c) State the monotone convergence theorem for sequences of real numbers.
(d) Consider the sequence (x_{n}) defined recursively by

$$
x_{1}=2,6 x_{n+1}=x_{n}^{2}+5 \text { for } n \geq 1
$$

i. Show that $1<x_{n}<5, \forall n \geq 1$.
ii. Show that $\left(x_{n}\right)$ is a decreasing sequence.
iii. Deduce that $\left(x_{n}\right)$ is convergent and find its limit.

QUESTION 3

3. (a) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be functions, and let $c \in(a, b)$.
i. Explain precisely the statement " f is continuous at c ". [2 marks]
ii. Show that the constant function $f(x) \equiv d$ is continuous at c.[4 marks]
iii. Prove that if both f and g are continuous at c then the difference $f-g$ is also continuous at c.
[4 marks]
iv. Give examples of functions f and g which make the converse of 3 (a)iii false.
(b) State the Intermediate value theorem and use it to show that the equation $15 x^{5}-19 x^{3}-1=0$ has a solution in the interval $[-1,0]$. [5 marks]
(c) Is the following statement true or false? Justify your answer.

If a function $f:[0,1] \rightarrow \mathbb{R}$ is continuous then so is the absolute value function $|f|:[0,1] \rightarrow \mathbb{R}$ defined by $|f|(x):=|f(x)|$. [3 marks]

QUESTION 4

4. (a) Let $f:(a, b) \rightarrow \mathbb{R}$ be a function.
i. Explain the statement " f is differentiable at $c \in(a, b)$ ". [2 marks]
ii. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x):=\left\{\begin{array}{cl}
-x, & x \geq 0 \\
1-e^{x}, & x<0
\end{array}\right.
$$

A. Show that f is differentiable at $x=0$.
B. Is f continuous at $x=0$? Justify your answer.
(b) i. State the Mean value theorem for derivatives.
ii. Use the Mean value theorem for derivatives to prove each of the following statements.
A. $|\sin x-\sin y| \leq|x-y|, \forall x, y \in \mathbb{R}$.
[5 marks]
B. The polynomial $p(x)=x^{3}+a x+b$ (with $a>0$) has exactly one real root.
[5 marks]

QUESTION 5

5. (a) Let $\sum a_{n}$ be a series in \mathbb{R}. Precisely explain the following statements.
i. $\sum a_{n}$ converges.
ii. $\sum a_{n}$ is absolutely convergent.
(b) Consider the series

$$
\begin{equation*}
\sum \frac{\sin n}{2 n^{2}-n} \tag{1}
\end{equation*}
$$

in \mathbb{R}
i. Determine whether this series converges absolutely or not. State any theorems used. You may assume the result that the \mathbf{p}-series $\sum \frac{1}{n^{p}}$ converges when $p>1$.
ii. Is the series in (1) convergent? Justify your answer.
(c) Prove that if $\sum a_{n}$ converges then $\lim \left(a_{n}\right)=0$. [4 marks]
(d) Is the converse of 5 c true? Justify your answer.
(e) Let $\sum a_{n}$ be absolutely convergent, and let $\left(b_{n}\right)$ be a bounded sequence of real numbers. Then, show that the series $\sum a_{n} b_{n}$ converges. [5 marks]

QUESTION 6

6. (a) Given that $f(x):=x, \forall x \in[2,3]$, prove that the function f is integrable on $[2,3]$ and find $\int_{2}^{3} x$.
[10 marks]
(b) Show that if $f:[a, b] \rightarrow \mathbb{R}$ is a bounded, Riemann integrable function, then $F:[a, b] \rightarrow \mathbb{R}$ with $F(x)=\int_{x}^{a} f$ is a continuous function. [4 marks]
(c) i. Let $D \subset \mathbb{R}$ be non-empty and let $f: D \rightarrow \mathbb{R}$ be a function.

What does it mean to say that f is bounded on $[a, b]$?
State the boundedness theorem for integrals.

QUESTION 7

7. (a) i. State the supremum property of \mathbb{R}.
ii. Let u be an upper bound for a non-empty subset V of \mathbb{R}. State a necessary and sufficient condition for u to equal sup V. [2 marks]
iii. Let S and T be non-empty subsets of \mathbb{R}. Define $S+T:=\{x+y \in \mathbb{R}: x \in S, y \in T\}$.
Use your result of 7 (a)ii above (or otherwise) to show that if both S and T are bounded above then $\sup (S+T)=\sup S+\sup T$.[6 marks]
(b) Determine whether each of the following statements is true or false. Justify your answer.
i. Every function $f:(0,1) \rightarrow \mathbb{R}$ that is continuous on (0,1) is also bounded on (0,1).
[2 marks]
ii. There are two distinct functions $f, g:[0,1] \rightarrow \mathbb{R}$ such that the sum $f+g$ is Riemann integrable and yet neither f nor g is Riemann integrable.
[2 marks]
iii. \mathbb{N} is bounded above in \mathbb{R}.
iv. All divergent sequences are unbounded.
v. There is a function $f:[-1,1] \rightarrow \mathbb{R}$ that is Riemann integrable on $[-1,1]$ but not differentiable on $[-1,1]$.
