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QUESTION 1 

L 	 (a) If 0 < a < b then prove that an < bn, "In E N. [5 marksJ 

(b) 	Let S be a set of real numbers. Explain precisely each of the following 
statements. 

i. S is bounded above. [2 marksJ 

ii.. S is bounded below. [2 marksJ 

iii. 	 S is bounded. [2 marks] 

(c) Determine whether the set S:= {x E lR: 12x + 11 > 5} is bounded or 

not. [4 marks] 

(d) 	Let a > 0 and let T := {as E lR: 8 E S}. Prove that 

sup(T) = asupS. '" 

QUESTION 2 

2. 	 (a) Let (xn) be a sequence of real numbers. 
following statements. 

i. The sequence (xn) is bounded. 

ii. 	The sequence (xn) is monotone. 

iii. 	The sequence (xn) is convergent.• 

[5 marksJ 

Explain precisely each of the 

(b) Use your definition in 2(a)ili to prove that the sequence 

(1 + ~_1)n) converges to O. 
(c) 	State the monotone convergence theorem for sequences of real 

numbers. 

(d) Consider the sequence (xn) defined recursively by 

Xl = 2, 6xnH = x~ + 5 for n 2: 1 

i. Show that 1 < Xn < 5, "In 2: 1. 

ii. Show that (xn) is a decreasing sequence. 

iii. 	Deduce that (xn) is convergent and find its limit. 

[2 marksJ 

[2 marks] 

[2 marks] 

[4 marks] 

[2 marks] 

. [3 marks] 

[3 marks] 

[2 marksJ 



QUESTION 3 

3. 	 (a) Let f, 9 : [a, b] -+ R be functions, and let C E (a, b). 

i. 	Explain precisely the statement "f is continuous at c". [2 marks] 

ii. 	 Show that the constant function f(x) == d is continuous at c.[4 marks] 

iii. 	Prove that if both f and 9 are continuous at c then the difference f - 9 

is also continuous at c. [4 marks] 

iv. Give examples of functions f and 9 which make the converse of 3(a)iii 
false. [2 marks] 

(b) 	State the Intermediate value theorem and use it to show that the equation 
15x5 19x3 - 1 = 0 has a solution in the interval [-1,0]. [5 marks] 

(c) Is the following st~ment true or false? Justify your answer. 

If a function f : [0,1] -+ R is continuous then so is the absolute value 
function If I : [0,1] -+ R defined by Ifl(x) := If(x)l. [3 marks] 

QUESTION 4 

4. 	 (a) Let f : (a, b) -+ R be a function. 

i. 	Explain the statement "f is differentiable at c E. (a, b)" . [2 marks] 

ii. 	Let f : R -+ R be defined by 

-x x 2: 0 
f(x):= { 1_~X, x<O 

A. 	 Show that f is differentiable at x = o. [4 marks] 

B. 	Is f continuous at x = O? Justify your answer. [2 marks] 

(b) 1. State the Mean value theorem for derivatives. [2 marks] 

ii. 	 Use the Mean value theorem for derivatives to prove each of the 
following statements. 

A. 	 Isin x - sin yl S; Ix - yl, \Ix, y E R. [5 marks] 

B. 	The polynomial p(x) = x3 + ax + b (with a > 0) has exactly one 
real root. [5 marks] 



QUESTION 5 

5. (a) Let 2: an be a series in R Precisely explain the following statements. 

i. 2: an converges. [2 marksJ 

ii. 2: an is absolutely convergent. [1 marks] 

(b) Consider the series 
'"' sinn 
L..J 2n2 - n 

(1) 

in JR 

i. 	Determine whether this series converges absolutely or not. State any 
theorems used. You may assume the result that the p-series 

2: -1 
converges when p > 1. 	 [4 marksJ

n!' '," 
ii. 	 Is the series in (1) convergent? Justify your answer. [2 marksJ 

(c) Prove that if 2: an converges then lim(an) = O. 	 [4 marksJ 

(d) Is the converse of 5c true? Justify your answer. 	 [2 marksJ 

(e) Let 2: an be absolutely convergent, and let (bn ) be a bounded sequence of 
real numbers. Then, show that the series 2: anbn converges. [5 marksJ 

QUESTION 6 

6. 	 (a) Given that f(x) := X, Yx E [2,3]' prove that the function f is integrable 

on [2,3J and find f: x. [10 marksJ 

(b) Show that if f : [a, bJ -t JR is a bounded, Riemann integrable function, 
then F : [a, bJ -t lR with F(x) = f;J:il f is a continuous function. [4 marksJ 

(c) ,i. 	Let D c JR be non-empty and let f : D -t JR be a function. 
What does it mean to say that f is bounded on [a, b]? [2 marksJ 

"..•... boundednesstheorem for integrals. 

eon~~;se'of 2(a)ill 

[2 marks] 

, '{2markSJ 



QUESTION 7 

7. 	 (a) i. State the supremum property of JR. [2 marks] 

ii. 	 Let u be an upper bound for a non-empty subset V of lR. State a 
necessary and sufficient condition for u to equal sup V. [2 marks] 

iii. 	Let S and T be non-empty subsets of JR. Define 
S +T:= {x + y E JR: x E S,y E T}. 
Use your result of 7(a)ii above (or otherwise) to show that if .both S 
andT are bounded above then sup(S + T) =sup S + sup T.[6 marks] . 

(b) Determine whether each of the following statements is true or false. Justify 
your answer. 

i. 	 Every function I : (0,1) -t JR that is continuous on (0,1) is also 
bounded on (0)). [2 marks] 

ii. 	 There are two distinct functions 1,9 : [0,1] -t JR such that the sum 
I + 9 is Riemann integrable and yet neither I nor 9 is Riemann 
integrable. [2 marks] 

iii. 	N is bounded above in lR. [2 marks] 

iv. All divergent sequences are unbounded. 	 [2 marks] 

v. 	There is a function I : [-1,1] -t JR that is Riemann integrable on 
[-1,1] but not differentiable on [-1,1]. [2 marks] 


