UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/2012

BSc. /BEd. /B.A.S.S III

 TITLE OF PAPER
 :
 REAL ANALYSIS

 COURSE NUMBER
 :
 M 331

 TIME ALLOWED
 :
 THREE (3) HOURS

 INSTRUCTIONS
 :
 1. THIS PAPER CONSISTS OF

 SEVEN QUESTIONS.
 2. ANSWER ANY FIVE QUESTIONS

 SPECIAL REQUIREMENTS
 :
 NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

*

1.	(a) If $0 < a < b$ then prove that $a^n < b^n$, $\forall n \in \mathbb{N}$.	[5 marks]						
	(b) Let S be a set of real numbers. Explain precisely each of t statements.	he following						
	i. S is bounded above.	[2 marks]						
	ii. S is bounded below.	[2 marks]						
	iii. S is bounded.	[2 marks]						
	(c) Determine whether the set $S := \{x \in \mathbb{R} : 2x+1 > 5\}$ is bounded or							
	not.	[4 marks]						
	(d) Let $\alpha > 0$ and let $T := \{ \alpha s \in \mathbb{R} : s \in S \}$. Prove that							
	$\sup(T) = \alpha \sup S.$	[5 marks]						

QUESTION 2

2.	(a)	Let (x_n)	be a	sequence	of	real	numbers.	Explain	precisely	each	of	\mathbf{the}
		follow	ving a	state	ements.		÷	4					

- i. The sequence (x_n) is bounded. [2 marks]
- ii. The sequence (x_n) is monotone. [2 marks]
- iii. The sequence (x_n) is convergent. [2 marks]
- (b) Use your definition in 2(a)iii to prove that the sequence

$$\left(\frac{1+(-1)^n}{n}\right)$$
 converges to 0. [4 marks]

- (c) State the monotone convergence theorem for sequences of real numbers. [2 marks]
- (d) Consider the sequence (x_n) defined recursively by

$$x_1 = 2, 6x_{n+1} = x_n^2 + 5$$
 for $n \ge 1$

- i. Show that $1 < x_n < 5$, $\forall n \ge 1$. [3 marks]
- ii. Show that (x_n) is a decreasing sequence. [3 marks]
- iii. Deduce that (x_n) is convergent and find its limit. [2 marks]

- 3. (a) Let $f, g: [a, b] \to \mathbb{R}$ be functions, and let $c \in (a, b)$.
 - i. Explain precisely the statement "f is continuous at c". [2 marks]
 - ii. Show that the constant function $f(x) \equiv d$ is continuous at c.[4 marks]
 - iii. Prove that if both f and g are continuous at c then the difference f-g is also continuous at c. [4 marks]
 - iv. Give examples of functions f and g which make the converse of 3(a)iii false. [2 marks]
 - (b) State the Intermediate value theorem and use it to show that the equation $15x^5 19x^3 1 = 0$ has a solution in the interval [-1, 0]. [5 marks]
 - (c) Is the following statement true or false? Justify your answer.
 - If a function $f : [0,1] \to \mathbb{R}$ is continuous then so is the absolute value function $|f|:[0,1] \to \mathbb{R}$ defined by |f|(x) := |f(x)|. [3 marks]

QUESTION 4

- 4. (a) Let $f:(a,b) \to \mathbb{R}$ be a function.
 - i. Explain the statement "f is differentiable at $c \in (a, b)$ ". [2 marks] ii. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} -x, & x \ge 0\\ 1 - e^x, & x < 0 \end{cases}$$

- A. Show that f is differentiable at x = 0. [4 marks]
- B. Is f continuous at x = 0? Justify your answer. [2 marks]
- (b) i. State the Mean value theorem for derivatives. [2 marks]
 - ii. Use the Mean value theorem for derivatives to prove each of the following statements.
 - A. $|\sin x \sin y| \le |x y|, \forall x, y \in \mathbb{R}.$ [5 marks]
 - B. The polynomial $p(x) = x^3 + ax + b$ (with a > 0) has exactly one real root. [5 marks]

5. (a) Let $\sum a_n$ be a series in \mathbb{R} . Precisely explain the following statements.

- i. $\sum a_n$ converges. [2 marks]
- ii. $\sum a_n$ is absolutely convergent. [1 marks]

(b) Consider the series

 $\sum \frac{\sin n}{2n^2 - n} \tag{1}$

in \mathbb{R}

- i. Determine whether this series converges absolutely or not. State any theorems used. You may assume the result that the **p**-series
 - $\sum \frac{1}{n^p} \text{ converges when } p > 1.$ [4 marks]
- ii. Is the series in (1) convergent? Justify your answer. [2 marks]
- (c) Prove that if $\sum a_n$ converges then $\lim(a_n) = 0$. [4 marks]
- (d) Is the converse of 5c true? Justify your answer. [2 marks]
- (e) Let $\sum a_n$ be absolutely convergent, and let (b_n) be a bounded sequence of real numbers. Then, show that the series $\sum a_n b_n$ converges. [5 marks]

QUESTION 6

- 6. (a) Given that $f(x) := x, \forall x \in [2,3]$, prove that the function f is integrable on [2,3] and find $\int_2^3 x$. [10 marks]
 - (b) Show that if $f : [a, b] \to \mathbb{R}$ is a bounded, Riemann integrable function, then $F : [a, b] \to \mathbb{R}$ with $F(x) = \int_x^a f$ is a continuous function. [4 marks]
 - (c) i. Let $D \subset \mathbb{R}$ be non-empty and let $f : D \to \mathbb{R}$ be a function. What does it mean to say that f is bounded on [a, b]? [2 marks]

ii. State the boundedness theorem for integrals. [2 marks]

iii. Is the converse of 2(a)iii true? Justify your ensure [2 marks]

- 7. (a) i. State the supremum property of R. [2 marks]
 ii. Let u be an upper bound for a non-empty subset V of R. State a necessary and sufficient condition for u to equal sup V. [2 marks]
 - iii. Let S and T be non-empty subsets of $\mathbb R.$ Define

 $S+T := \{x + y \in \mathbb{R} : x \in S, y \in T\}.$ Use your result of 7(a)ii above (or otherwise) to show that if both S and T are bounded above then $\sup(S+T) = \sup S + \sup T$.[6 marks]

- (b) Determine whether each of the following statements is true or false. Justify your answer.
 - i. Every function $f : (0,1) \to \mathbb{R}$ that is continuous on (0,1) is also bounded on (0,1). [2 marks]
 - ii. There are two distinct functions $f, g : [0, 1] \to \mathbb{R}$ such that the sum f + g is Riemann integrable and yet neither f nor g is Riemann integrable. [2 marks]
 - iii. \mathbb{N} is bounded above in \mathbb{R} . [2 marks]
 - iv. All divergent sequences are unbounded. [2 marks]
 - v. There is a function $f : [-1,1] \to \mathbb{R}$ that is Riemann integrable on [-1,1] but not differentiable on [-1,1]. [2 marks]