UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2011/2012

BSc. /BEd. /B.A.S.S III

TITLE OF PAPER	:	REAL ANALYSIS
COURSE NUMBER	:	М 331
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
		2. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1.	(a)	Prove that $a^2 < b^2 \iff 0 < a < b$.	[5 m	arks]
	(b)	Explain precisely the statement:		
		"A set S of real numbers is bounded".	[2 m	arks]
	(c)	Determine whether the following sets are bounded or not. answers.	Justify	your
			Ţ,	1 1

i.
$$S := \{x \in \mathbb{R} : |x+2| = 1 + |3-x|\}.$$
 [4 marks]

ii.
$$S := \{ \frac{n}{n+1} : n \in \mathbb{N} \}.$$
 [4 marks]

(d) Let $\alpha > 0$ and let $T := \{ \alpha s \in \mathbb{R} : s \in S \}$. Prove that $\inf(T) = \alpha \inf S$. [5 marks]

QUESTION 2

- 2. (a) Explain precisely the statement "A real number l is the limit of a sequence (x_n) of real numbers. [2 marks]
 - (b) Use your definition in 2a to prove the following:

i.
$$\lim \left(\frac{\sin n}{n^2}\right) = 0.$$
 [4 marks]

ii.
$$\lim\left(\frac{2n}{n+5}\right) = 2.$$
 [4 marks]

(c) i. State and prove the squeeze theorem for sequences of real numbers. [6 marks]

ii. Use the squeeze theorem to prove that
$$\lim \left(\frac{(\sin n)^2}{n+1}\right) = 0.$$
 [4 marks]

QUESTION 3

- 3. (a) Let $f, g: [a, b] \to \mathbb{R}$ be functions, and let $c \in (a, b)$.
 - i. Explain precisely the statement "f is continuous at c". [2 marks]
 - ii. Show that the constant function $f(x) \equiv d$ is continuous at c.[4 marks]
 - iii. Prove that if both f and g are continuous at c then the sum f + g is also continuous at c. [4 marks]
 - iv. Is the converse of 3(a)iii true? Justify your answer. [2 marks]
 - (b) State the Intermediate value theorem and use it to show that the equation $\sin x x = 0$ has a solution in the interval $[0, \pi]$. [5 marks]
 - (c) Is the following statement true or false? Justify your answer. If the absolute value function $|f|: [0,1] \to \mathbb{R}$ defined by |f|(x) := |f(x)| is continuous then so is the function $f: [0,1] \to \mathbb{R}$. [3 marks]

QUESTION 4

- 4. (a) Let $f:(a,b) \to \mathbb{R}$ be a function.
 - i. Explain the statement "f is not differentiable at $c \in (a, b)$ ". [2 marks]
 - ii. Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = |2x + 1| is not differentiable at $x = -\frac{1}{2}$. [4 marks]
 - (b) i. State the Mean value theorem for derivatives. [2 marks]
 - ii. Use the Mean value theorem for derivatives to prove each of the following statements.
 - A. $\frac{2}{3} < \ln 3 < 2.$ [5 marks]
 - B. Let $f : [a, b] \to \mathbb{R}$ be a function which is both continuous and differentiable on (a, b). If f'(x) > 0, $\forall x \in (a, b)$, then f is strictly increasing on (a, b). [5 marks]

QUESTION 5

э.	(a) what does it mean to say that a series $\sum a_n$ in K converges?	[2 marks]	
	(b) Prove that if $\sum a_n, \sum b_n$ converge, then $\sum (a_n + b_n)$ converges.	[5 marks]	
	(c) i. State the Cauchy convergence criterion for series in \mathbb{R} .	[2 marks]	
	ii. Prove that the harmonic series $\sum \frac{1}{n}$ diverges.	[5 marks]	
	(d) Do the following series converge or not? Justify your answers.		
	i. $-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \dots$	[3 marks]	
	ii. $1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \dots$	[3 marks]	

QUESTION 6

- 6. (a) If $f : [a, b] \to \mathbb{R}$ be a function, then explain in detail the statement "f is Reimann integrable on [a, b]". [10 marks]
 - (b) Given that $f(x) := x, \forall x \in [1, 2]$, prove that the function f is Reimann integrable on [1, 2] and find $\int_1^2 x$. [10 marks]

QUESTION 7

7. (a) i. State the infimum property of \mathbb{R} . [2 marks]

- ii. Let u be a lower bound for a non-empty subset V of R. State a necessary and sufficient condition for u to equal inf V. [2 marks]
 iii. Let S and T be non-empty subsets of R. Define
 - S + T := { $x + y \in \mathbb{R} : x \in S, y \in T$ }. Use your result of 7(a)ii above (or otherwise) to show that if both S and T are bounded above then $\inf(S + T) = \inf S + \inf T$. [6 marks]
- (b) Determine whether each of the following statements is true or false. Justify your answers.
 - i. Every sequence of reals numbers that is both bounded and monotone is convergent. [2 marks]
 - ii. There are two distinct Riemann integrable functions $f, g : [0, 1] \to \mathbb{R}$ such f < g and yet neither $\int_0^1 f > \int_0^1 f$. [2 marks]
 - iii. \mathbb{N} is bounded in \mathbb{R} . [2 marks]
 - iv. There is a bounded sequence of real numbers which is divergent. [2 marks]
 - v. Every function $f : [-1,1] \to \mathbb{R}$ that is continuous on [-1,1] is also differentiable on [-1,1]. [2 marks]