UNIVERSITY OF SWAZILAND

 SUPPLEMENTARY EXAMINATION 2011/2012

 SUPPLEMENTARY EXAMINATION 2011/2012}

107

BSc. /BEd. /B.A.S.S III

TITLE OF PAPER	$:$	REAL ANALYSIS
COURSE NUMBER	$:$	M 331
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) Prove that $a^{2}<b^{2} \Longleftrightarrow 0<a<b$.
(b) Explain precisely the statement:
"A set S of real numbers is bounded".
(c) Determine whether the following sets are bounded or not. Justify your answers.
i. $S:=\{x \in \mathbb{R}:|x+2|=1+|3-x|\}$.
ii. $S:=\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}$.
[4 marks]
(d) Let $\alpha>0$ and let $T:=\{\alpha s \in \mathbb{R}: s \in S\}$. Prove that $\inf (T)=\alpha \inf S$.

QUESTION 2

2. (a) Explain precisely the statement "A real number l is the limit of a sequence $\left(x_{n}\right)$ of real numbers.
[2 marks]
(b) Use your definition in 2 a to prove the following:
i. $\lim \left(\frac{\sin n}{n^{2}}\right)=0$.
[4 marks]
ii. $\lim \left(\frac{2 n}{n+5}\right)=2$.
[4 marks]
(c) i. State and prove the squeeze theorem for sequences of real numbers.
ii. Use the squeeze theorem to prove that $\lim \left(\frac{(\sin n)^{2}}{n+1}\right)=0$. [4 marks]

QUESTION 3

3. (a) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be functions, and let $c \in(a, b)$.
i. Explain precisely the statement " f is continuous at c ". [2 marks]
ii. Show that the constant function $f(x) \equiv d$ is continuous at c.[4 marks]
iii. Prove that if both f and g are continuous at c then the sum $f+g$ is also continuous at c.
iv. Is the converse of 3 (a) iii true? Justify your answer.
(b) State the Intermediate value theorem and use it to show that the equation $\sin x-x=0$ has a solution in the interval $[0, \pi]$.
(c) Is the following statement true or false? Justify your answer.

If the absolute value function $|f|:[0,1] \rightarrow \mathbb{R}$ defined by $|f|(x):=|f(x)|$ is continuous then so is the function $f:[0,1] \rightarrow \mathbb{R}$.

QUESTION 4

4. (a) Let $f:(a, b) \rightarrow \mathbb{R}$ be a function.
i. Explain the statement " f is not differentiable at $c \in(a, b)$ ". [2 marks]
ii. Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=|2 x+1|$ is not differentiable at $x=-\frac{1}{2}$.
(b) i. State the Mean value theorem for derivatives.
ii. Use the Mean value theorem for derivatives to prove each of the following statements.
A. $\frac{2}{3}<\ln 3<2$.
[5 marks]
B. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function which is both continuous and differentiable on (a, b). If $f^{\prime}(x)>0, \forall x \in(a, b)$, then f is strictly increasing on (a, b).

QUESTION 5

5. (a) What does it mean to say that a series $\sum a_{n}$ in \mathbb{R} converges? [2 marks]
(b) Prove that if $\sum a_{n}, \sum b_{n}$ converge, then $\sum\left(a_{n}+b_{n}\right)$ converges. [5 marks]
(c) i. State the Cauchy convergence criterion for series in \mathbb{R}. [2 marks]
ii. Prove that the harmonic series $\sum \frac{1}{n}$ diverges.
(d) Do the following series converge or not? Justify your answers.
i. $-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\ldots$
ii. $1+\frac{1}{2}+\frac{1}{3!}+\frac{1}{4!}+\ldots$.

QUESTION 6

6. (a) If $f:[a, b] \rightarrow \mathbb{R}$ be a function, then explain in detail the statement " f is Reimann integrable on $[a, b]^{\prime \prime}$.
[10 marks]
(b) Given that $f(x):=x, \forall x \in[1,2]$, prove that the function f is Reimann integrable on $[1,2]$ and find $\int_{1}^{2} x$.
[10 marks]

QUESTION 7

7. (a) i. State the infimum property of \mathbb{R}.
ii. Let u be a lower bound for a non-empty subset V of \mathbb{R}. State a necessary and sufficient condition for u to equal $\inf V$.
iii. Let S and T be non-empty subsets of \mathbb{R}. Define
$S+T:=\{x+y \in \mathbb{R}: x \in S, y \in T\}$.
Use your result of 7 (a)ii above (or otherwise) to show that if both S and T are bounded above then $\inf (S+T)=\inf S+\inf T$. [6 marks]
(b) Determine whether each of the following statements is true or false. Justify your answers.
i. Every sequence of reals numbers that is both bounded and monotone is convergent.
ii. There are two distinct Riemann integrable functions $f, g:[0,1] \rightarrow \mathbb{R}$ such $f<g$ and yet neither $\int_{0}^{1} f>\int_{0}^{1} f$.
iii. \mathbb{N} is bounded in \mathbb{R}.
iv. There is a bounded sequence of real numbers which is divergent.
v. Every function $f:[-1,1] \rightarrow \mathbb{R}$ that is continuous on $[-1,1]$ is also differentiable on $[-1,1]$.
[2 marks]
