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QUESTION 1 

1. 	 (a) Prove that a2 < l? {:::::=} 0 < a < b. [5 marks] 

(b) Explain precisely the statement: 

"A set S of real numbers is bounded" . [2 marks] 

(c) Determine whether 	the following sets are bounded or not. Justify your 
answers. 

i. S:={xElR:lx+21=1+13-xl}. 	 [4 marks] 

ii. 	 S:= {n~l : n EN}. [4 marks] 

(d) Let a > 0 and let T:= {as E lR: s E S}. Prove that 

inf(T) = a inf S. [5 marks] 

QUESTION 2 

2. 	 (a) Explain precisely the statement "A real number l is the limit of a sequence 
(xn) of real numbers. [2 marks] 

(b) Use your definition in 2a to prove the following: 

. l' (sinn)'= 01. 1m 2 . 	 [4 marks]
n 

(2n)11... 	 l'1m -- = 2. [4 marks]
n+5 

(c) 	 i. State and prove the squeeze theorem for sequences of real 
numbers. [6 marks] 

ii. Use the squeeze theorem to prove that lim ((~~t) = O. [4 marks] 



QUESTION 3 

3. 	 (a) Let I, 9 : [a, b]-7 JR be functions, and let c E (a, b). 

i. 	Explain precisely the statement "I is continuous at c". [2 marks] 

ii. 	 Show that the constant function I(x) == d is continuous at c.[4 marks] 

iii. Prove that if both I and 9 are continuous at c then the sum I + 9 is 
also continuous at c. [4 marks] 

iv. 	 Is the converse of 3(a)iii true? Justify your answer. [2 marks] 

(b) State the Intermediate value theorem and use it to show that the equation 
sin x - x = 0 has a solution in the interval [0, 'IT]. [5 marks] 

(c) 	 Is the following statement true or false? Justify your answer. 

If the absolute value function III : [0,1] -7 JR defined by 1/1(x) := I/(x)1 is 
continuous then so is the function I : [0, 1] -7 JR. [3 marks] 

QUESTION 4 

4. 	 (a) Let I: (a, b) -7 JR be a function. 

i. 	Explain the statement "I is not differentiable at c E (a, b)" .[2 marks] 

ii. 	 Show that the function I : JR -7 JR defined by I(x) = 12x + 11 is not 
differentiable at x = [4 marks] 

(b) i. State the Mean value theorem for derivatives. [2 marks] 

ii. Use the Mean value theorem 	for derivatives to prove each of the 
following statements. 

A. 	 '32 
< In3 < 2. [5 marks] 

B. 	Let I : [a, b] -7 lR be a function which is both continuous and 
differentiable on (a, b). If f'(x) > 0, vx E (a, b), then I is strictly 
increasing on (a, b). [5 marks] 



QUESTION 5 

5. (a) 	What does it mean to say that a series L an in JR converges? [2 marks] 

(b) 	Prove that if Lan, L bnconverge, then L{an + bn ) converges. [5 marks] 

(c) i. 	 State the Cauchy convergence criterion for series in R [2 marks] 

ii. 	 Prove that the harmonic series L 2:. diverges. [5 marks]
n 

(d) 	Do the following series converge or not? Justify your answers. 

111 


i. 	 -1+ 2 -'3+4+ .... [3 marks] 

1 1 1 
ii. 	 1 + 2+ 3! + 4! + .... [3 marks] 

QUESTION 6 

6. 	 (a) If 1 : [a, b] ---? JR be a function, then explain in detail the statement "1 is 
Reimann integrable on [a, b]" . [10 marks] 

(b) 	Given that l(x) := X, '\Ix E [1,2]' prove that the function 1 is Reimann 
2integrable on [1,2] and find J x. 	 [10 marks]1 

QUESTION 7 

7. 	 (a) i. State the infimum property of R [2 marks] 

ii. 	 Let u be a lower bound for a non-empty subset V of JR. State a 
necessary and sufficient condition for u to equal inf V. [2 marks] 

iii. 	 Let B and T be non-empty subsets of JR. Define 
B + T := {x + y E JR : x E B, YET}. 
Use your result of 7(a)ii above (or otherwise) to show that if both B 
and T are bounded above then inf(B + T) = inf B + infT. [6 marks] 

(b) 	 Determine whether each of the following statements is true or false. Justify 
your answers. 

i. 	 Every sequence of reals numbers that is both bounded and monotone 
is convergent. [2 marks] 

ii. 	 There are two distinct Riemann integrable functions f, 9 : [0,1] ---? lR 
such 1 < 9 and yet neither J011 > Jo11. [2 marks] 

iii. 	 ]':I is bounded in R [2 marks] 

iv. There is a bounded sequence of real numbers which is 
divergent. [2 marks] 

v. 	 Every function 1 : [-1, 1] ---? JR that is continuous on 1,1] is also 
differentiable on [-1, 1]. [2 marks] 


