UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2011/12

B.Sc. / B.Ed. / B.A.S.S III

TITLE OF PAPER	:	DYNAMICS II
COURSE NUMBER	:	M355
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF SEVEN QUESTIONS.
		2. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Give the definitions and some examples of

(i) generalized coordinates,

(ii) holonomic systems,

(iii) scleronomic systems.			[2,2,2]
(b) Prove that the force of gravity is conservative.		۹.	[3]

(c) Prove the interchange of d and ∂ Lemma

$$\int \frac{d}{dt} \left(\frac{\partial \overline{\tau}_{\gamma}}{\partial q_i} \right) = \frac{\partial \overline{\tau}_{\gamma}}{\partial q_i}.$$

[7]

[2,2]

(d) Let a particle of the mass m be in the field of gravity.

(i) Derive Lagrange equation and

(ii) solve it.

QUESTION 2

(a) Two particles of masses m_1 and m_2 are connected by a light inextensible string of length l and negligible mass which passes over a frictionless pulley. Set up the Lagrangian and find the acceleration of mass m_1 . [5]

(b) System has two degrees of freedon with the generalized coordinates θ and ρ . Kinetic and potential energies are as follows

$$T = \frac{2}{3}Ma^2(\dot{\theta}^2 + \dot{\rho}^2\sin^2\theta),$$

 $\Pi = -Mga\cos\theta, \quad M, g, a \text{ are const.}$

(i) Derive Lagrange equations,

(ii) Find a cyclic coordinate and thus find the constant of motion. [5,3]

(c) Let the potential energy be

 $\Pi = \Pi(q, \dot{q})$. Show that

$$T + \Pi = \sum_{i=1}^{N} \dot{q}_i \frac{\partial \Pi}{\partial \dot{q}_i} = const. \text{ in the usual notations.}$$
[7]

.

(a) Derive Hamilton's equations if $H = H(q$	<i>, p</i>). [5]
(b) For the mathematical pendulum, find	
(i) generalized momentum,	
(ii) Hamiltonian,	· · ·
(iii) Hamilton's equations.	[2,2,2]
(c) Let x and y be generalized coordinates.	Given kinetic energy
$2T = M[(\dot{x} - \omega y)^2 + (\dot{y} + \omega x)^2]$ and potential	al energy $\Pi(x,y)$.
Find	
(i) generalized momenta,	

(ii) Hamiltonian,

.

(iii) Hamilton's equations.

[3,3,3]

QUESTION 4 .

,

a) Prove that $\frac{dH}{dt} = \frac{\partial H}{\partial t}$.	[4]
b) Use all three conditions to demonstrate that the transformation	
Q = p, $P = -q$ is cononical.	[8]
c) Using Jacobian show that the transformation	
$Q = \cos q + \sin p$, $P = -\sin q + \cos p$ is not canonical.	[3]
d) (i) Define Poisson bracket between two physical quantities.	
(ii) Prove that	
[A, B + C] = [A, B] + [A, C].	[2,3]

.

[5]

. .

a) Prove that

 $[q_k, p_l]_{q,p} = \delta_{kl}$, in the usual notations.

b) Use Poisson brackets to show that transformation $q = \sqrt{\frac{P}{\pi\omega}} \sin(2\pi Q), \quad p = \sqrt{\frac{\omega P}{\pi}} \cos(2\pi Q)$ is canonical. [5]

c) (i) State Jacobi's identity. (JI).

(ii) Apply JI to show that if X and Y are both constants of motion then [X, Y] is also constant of motion. [2,8]

QUESTION 6

a) Consider a functional

.

$$V[y(x)] = \int_{x_0}^{x_1} F(x, y(x), y'(x)) dx,$$

subject to the boundary conditions $y(x_0) = y_0$, $y(x_1) = y_1$. Show that if y(x) is an extremal, then it satisfies Euler equation. [7]

b) Find the extremals and the extreme value of V if

$$V[y(x)] = \int_{1}^{2} (yy' + (y')^{2}) dx, \quad y(1) = 1, \quad y'(2) = 2.$$
(5) Let $F = y\sqrt{1 + (y')^{2}}$. Construct

(i) Euler equation,

-

(ii) Beltrami identity.

[4, 4]

[5]

a) Find extremals for the following functionals

(i)
$$V[y(x), z(x)] = \int_0^{\frac{\pi}{2}} (y'^2 + z'^2 + 2yz) dx;$$

 $y(0) = z(0) = 0; \quad y\left(\frac{\pi}{2}\right) = z\left(\frac{\pi}{2}\right) = 1.$
(ii) $V[Y(X)] = \int_0^{\frac{\pi}{2}} (y''^2 - y^2 + x^2) dx,$
 $y(0) = 1, \quad y'(0) = y\left(\frac{\pi}{2}\right) = 0, \quad y'\left(\frac{\pi}{2}\right) = -1.$ [6,8]
b) Find Ostrogradski's equation for the following functional

[6]

b) Find Ostrogradski's equation for the following functional

$$V[Z(x,y)] = \int_{D} \int_{D} \left[\left(\frac{\partial z}{\partial x} \right)^2 - \left(\frac{\partial z}{\partial y} \right)^2 \right]_{\mathbf{x}} dx dy,$$

1

where z(x, y) is known on the boundary of region D.