FINAL EXAMINATIONS 2011/12
B.Sc. / B.Ed. / B.A.S.S III

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Give the definitions and some examples of
(i) generalized coordinates,
(ii) holonomic systems,
(iii) scleronomic systems.
(b) Prove that the force of gravity is conservative.
(c) Prove the interchange of d and ∂ Lemma

$$
\frac{d}{d t}\left(\frac{\partial \bar{\tau}_{\gamma}}{\partial q_{i}}\right)=\frac{\partial \overline{\boldsymbol{T}}_{\gamma}}{\partial q_{i}} .
$$

(d) Let a particle of the mass m be in the field of gravity.
(i) Derive Lagrange equation and
(ii) solve it.

QUESTION 2

(a) Two particles of masses m_{1} and m_{2} are connected by a light inextensible string of length l and negligible mass which passes over a frictionless pulley. Set up the Lagrangian and find the acceleration of mass m_{1}.
(b) System has two degrees of freedon with the generalized coordinates θ and ρ. Kinetic and potential energies are as follows
$T=\frac{2}{3} M a^{2}\left(\dot{\theta}^{2}+\dot{\rho}^{2} \sin ^{2} \theta\right)$,
$\Pi=-M g a \cos \theta, \quad M, g, a$ are const.
(i) Derive Lagrange equations,
(ii) Find a cyclic coordinate and thus find the constant of motion.
(c) Let the potential energy be
$\Pi=\Pi(q, \dot{q})$. Show that
$T+\Pi=\sum_{i=1}^{n} \dot{q}_{i} \frac{\partial \Pi}{\partial \dot{q}_{i}}=$ const. in the usual notations.

QUESTION 3

(a) Derive Hamilton's equations if $H=H(q, p)$.
(b) For the mathematical pendulum, find
(i) generalized momentum,
(ii) Hamiltonian,
(iii) Hamilton's equations.
(c) Let x and y be generalized coordinates. Given kinetic energy
$2 T=M\left[(\dot{x}-\omega y)^{2}+(\dot{y}+\omega x)^{2}\right]$ and potential energy $\Pi(x, y)$.
Find
(i) generalized momenta,
(ii) Hamiltonian,
(iii) Hamilton's equations.

QUESTION 4 .

a) Prove that $\frac{d H}{d t}=\frac{\partial H}{\partial t}$.
b) Use all three conditions to demonstrate that the transformation
$Q=p \quad, P=-q$ is cononical.
c) Using Jacobian show that the transformation
$Q=\cos q+\sin p, \quad P=-\sin q+\cos p$ is not canonical.
d) (i) Define Poisson bracket between two physical quantities.
(ii) Prove that

$$
\begin{equation*}
[A, B+C]=[A, B]+[A, C] \tag{2,3}
\end{equation*}
$$

QUESTION 5

a) Prove that
$\left[q_{k}, p_{l}\right]_{q, p}=\delta_{k l}$, in the usual notations.
b) Use Poisson brackets to show that transformation $q=\sqrt{\frac{P}{\pi \omega}} \sin (2 \pi Q), \quad p=\sqrt{\frac{\omega P}{\pi}} \cos (2 \pi Q)$ is canonical.
c) (i) State Jacobi's identity. (JI).
(ii) Apply JI to show that if X and Y are both constants of motion then $[X, Y]$ is also constant of motion.

QUESTION 6

a) Consider a functional

$$
V[y(x)]=\int_{x_{0}}^{x_{1}} F\left(x, y(x), y^{\prime}(x)\right) d x
$$

subject to the boundary conditions $y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}$. Show that if $y(x)$ is an extremal, then it satisfies Euler equation.
b) Find the extremals and the extreme value of V if
$V[y(x)]=\int_{1}^{2}\left(y y^{\prime}+\left(y^{\prime}\right)^{2}\right) d x, \quad y(1)=1, \quad y^{\prime}(2)=2$.
c) Let $F=y \sqrt{1+\left(y^{\prime}\right)^{2}}$. Construct
(i) Euler equation,
(ii) Beltrami identity.

QUESTION 7

a) Find extremals for the following functionals
(i) $V[y(x), z(x)]=\int_{0}^{\frac{\pi}{2}}\left(y^{2}+z^{\prime 2}+2 y z\right) d x$;
$y(0)=z(0)=0 ; \quad y\left(\frac{\pi}{2}\right)=z\left(\frac{\pi}{2}\right)=1$.
(ii) $V[Y(X)]=\int_{0}^{\frac{\pi}{2}}\left(y^{\prime \prime 2}-y^{2}+x^{2}\right) d x$,
$y(0)=1, \quad y^{\prime}(0)=y\left(\frac{\pi}{2}\right)=0, \quad y^{\prime}\left(\frac{\pi}{2}\right)=-1$.
b) Find Ostrogradski's equation for the following functional
$V[Z(x, y)]=\iint_{D}\left[\left(\frac{\partial z}{\partial x}\right)^{2}-\left(\frac{\partial z}{\partial y}\right)^{2}\right] d x d y$,
where $z(x, y)$ is known on the boundary of region D.

