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QUESTION 1 

(a) Give the definitions and some examples of 

(i) generalized coordinates, 

(ii) holonomic systems, 

(iii) scleronomic systems. [2,2,2] 

(b) Prove that the force of gravity is conservative. [3] 

(c) Prove the interchange of d and aLemma 

[7] 

(d) Let a particle of the mass m be in the field of gravity. 

(i) Derive Lagrange equation and 

(ii) solve it. [2,2] 

QUESTION 2 

(a) Two particles of masses ml and m2 are connected by a light inextensible string of length l 

and negligible mass which passes over a frictionless pulley. Set up the Lagrangian and find the 

acceleration of mass mI' [5] 

(b) System has two degrees of freedon with the generalized coordinates Band p. Kinetic and potential 

energies are as follows 

T ~Ma2({F+p2sin2B), 


II -Mga cos B, M,y,a are const. 


(i) Derive Lagrange equations, 

(ii) Find a cyclic coordinate and thus find the constant of motion. [5,3J 

(c) Let the potential energy qe 

II II(q,q). Show that 

~. all . h ual .T + II Lqi~ = canst. III t e us notatIOns. [7] 
i=l q. 



QUESTION 3 

(a) Derive Hamilton's equations if H = H(q,p). [5] 

(b) For the matheme.tical pendulum, find 

(i) generalized momentum, 

(ii) Hamiltonian, 

(iii) Hamilton's equations. [2,2,2] 

(c) Let x and y be generalized coordinates. Given kinetic energy 

2T M[(± - wy)2 + (iJ +wx)2] and potential energy ll(x, y). 

Find 

(i) generalized momenta, 

(ii) Hamiltonian, 

(iii) Hamilton's equations. 

[3,3,3] 

QUESTION 4 

dH 8H
a) Prove that dt = [4] 


b) Use all three conditions to demonstrate that the transformation 


Q = p , P = -q is cononical. [8] 


c) Using Jacobian show that the transformation 


Q = cos q + sin p, P - sin q + cos p is not canonical. [3J 


d) (i) Define Poisson bracket between two physical quantities. 


(li) Prove that 


[A,B + C] = [A,B] + [A,C]. [2,3] 




QUESTION 5 

a) Prove that 

[qk,ptlq,p Okl, in the usual notations. [5] 

b) Use Poisson brackets to show that transformation q = rPsin(27rQ), pV~ 
is canonical. [5] 

c) (i) State Jacobi's identity. (JI). 

(ii) Apply JI to show that if X and Y are both constants of motion then [X, Y] is also·constantof . 

motion. [2,8] 

QUESTION 6 

a) Consider a functional 

V[y(x)] 1%1 F(x, y(x), yl (x»dx, 
"'0 . 

subject to the boundary conditions y(xo) == Yo, Y(Xl) = Yl' Show that if y(x) is an extremal, then 

it sa.tisfies Euler equation. [7] 

b) Find the extremals and the extreme value of V if 

V[y(x)] = l~(yyl + (y')2)dx, y(l) = 1, y'(2) = 2. [5] 

c) Let F = yy'l t (yl)2. Construct 

(i) Euler equation, 

(ii) Beltrami identity. [4,4] 



QUESTION 7 

a) Find extremals for the following functionals 

(i) V[y(x), z(x)) =1Y 
(y,2 + z'z + 2yz)d,xj 

yeO) z(O) = 0; y CD z (%) = 1. 

(ii) V[Y(X)] = (f (y"Z _ yZ + x2)d,x,
.10 

yeO) = 1, y'(O) y (i) = 0, y' (i) = -1. [6,8] 

b) Find Ostrogradski's equation for the following functional 

VIZ(x,y)] =Jj [G:)' -(~ndxdY, 
where z(x, y) is known 011 the boundary of region D. [6] 


