UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/2012

BSc./ BEd./B.A.S.S IV

TITLE OF PAPER : NUMERICAL ANALYSIS II

COURSE NUMBER : M 411

TIME ALLOWED : THREE (3) HOURS

INSTRUCTIONS

· • .

- : 1. THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS.
 - 2. ANSWER ANY <u>FIVE</u> QUESTIONS.
 - 3. NON PROGRAMMABLE

CALCULATORS MAY BE USED.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

116

QUESTION 1

- 1. (a) Let w(x) be an integrable function and let I = [a, b] be an interval in \mathbb{R} . Also, let $S := \{\phi_0(x), \phi_1(x), \dots, \phi_n(x)\}$ be a set of functions that are defined on I.
 - i. What does it mean to say that w is a weight function on I?[2 marks]
 - ii. What does it mean to say that S is orthogonal on I with respect to w? [2 marks]
 - iii. What does it mean to say that S is linearly independent on I? [2 marks]
 - (b) Suppose w(x) is a weight function on closed interval [a, b], and suppose

$$\int_a^b w = 1, \int_a^b wx = 2$$
$$\int_a^b wx^2 = 3, \int_a^b wx^3 = 6$$

Take $\phi_0(x) = 1$.

- i. Determine polynomials $\phi_1(x)$ and $\phi_2(x)$ of degrees 1 and 2 respectively, so that $S := \{\phi_0, \phi_1, \phi_2\}$ is an orthogonal set on [a, b] with respect to w. [10 marks]
- ii. Is S linearly independent on [a, b]? Justify your answer. [2 marks]

(c) Give an example of a weight function w(x) on the interval (-1, 1). [2 marks]

QUESTION 2

- 2. (a) Find the linear least squares polynomial approximation to $f(x) = \ln(x+2)$ on [1,3]. [10 marks]
 - (b) Use Chebyshev polynomials of the first kind with degree at most 2 to approximate $\arccos(x)$. [10 marks]

QUESTION 3

- 3. (a) Approximate the integral $\int_0^{0.2} e^{-\tau^2} d\tau$ by using a single step of the Runge-Kutta method of order 2. [6 marks]
 - (b) Use a single step of the Runge-Kutta method of order 2 to solve:

$$x'' + x' + 3x = te^t, \ 0 \le x \le 1, \ x(0) = 1, \ x'(0) = 0,$$

for x(0.1) and x'(0.1) correct to 3 decimal places. [14 marks]

QUESTION 4

- 4. Consider the initial value problem (IVP) $x'(t) = f(t, x), a \le t \le b, x(a) = \alpha$
 - (a) Show that

$$x'(t_i) = \frac{-3x(t_i) + 4x(t_{i+1}) - x(t_{i+2})}{2h} + \frac{h^3}{3}x'''(\tau_i)$$
(1)

for some $\tau_i \in (t_i, t_{i+2})$.

(b) Let h = 0.05, $x_0 = x(t_0) = -1$, $x_1 = x(t_1) = 1 - e^{-0.05}$. Use the method

$$x_{i+2} = 4x_{i+1} - 3x_i - 2hf(t_i, x_i); \ i = 0, 1, \dots, N-2$$

suggested by equation (1) to solve IVP; x' = 1 + x, $0 \le t \le 1$, x(0) = -1 for x(0.1). [3 marks]

- (c) State the Dalquist equivalence theorem for the convergence of a multistep method. [2 marks]
- (d) Analyse this method for consistency, zero-stability and convergence.

[11 marks]

[4 marks]

QUESTION 5

- 5. Let Ω be the *L*-shaped region in \mathbb{R}^2 enclosed by the polygonal path Γ passing through the points (0,0), (0,1), (1,1), (1,3), (3,3) and (3,0).
 - (a) Consider the differential problem

$$egin{aligned} u_{xx}(x,y)+u_{yy}(x,y)=&0,\ (x,y)\in\Omega\ &u(x,y)=&x+y,(x,y)\in\Gamma \end{aligned}$$

Use the "the 5 point formula" with a uniform grid on Ω to approximate both u(2,1) and u(2,2). [10 marks]

(b) Given the Poisson equation

$$u_{xx}(x,y) + u_{yy}(x,y) = xy, \ (x,y) \in \Omega$$

subject to boundary condition

$$u(x,y) = x + y, \ (x,y) \in \Gamma,$$

consider a finite difference method resulting from using central difference approximations for the derivatives. Use this method to approximate both u(2,1) and u(2,2). [10 marks]

QUESTION 6

6. Consider the differential problem;

$$u_t(x,t) = u_{xx}(x,t), \ 0 < x < 1, \ t > 0,$$

$$u_x(0,t) = 1, \ u_x(1,t) = 0, \ t > 0,$$

$$u(x,0) = x(1-x), \ 0 \le x \le 1.$$

Suppose that an approximate solution to this problem is determined by replacing u_t with a forward difference, and that both u_x and u_{xx} are replaced by central differences.

(a) Show that the resulting finite difference equations may be written in matrix form as

$$u_{j+1} = Bu_j + v$$
, where $j = 0, 1, ...$

Identify the square matrix B, and the vectors \mathbf{u}_j and \mathbf{v} . [12 marks]

(b) Use this numerical scheme with $\Delta t = 0.1$ and $\Delta x = 0.5$ to approximate u(0.5, 0.1). [8 marks]

QUESTION 7

7. (a) Show that the numerical scheme

$$\frac{U_{j}^{n+1} - U_{j}^{n}}{k} = \frac{U_{j-1}^{n+1} - 2U_{j}^{n+1} + U_{j+1}^{n+1}}{h^{2}}$$

for approximating the differential equation

$$u_t = u_{xx} \tag{2}$$

is unconditionally stable.

[10 marks]

(b) Show that the numerical scheme

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + a \frac{U_j^n - U_{j-1}^n}{\Delta x} = 0$$

for approximating the differential equation

$$u_t + au_x = 0, \ (a > 0)$$

is convergent provided
$$a \frac{\Delta t}{\Delta x} \leq 1.$$
 [10 marks]