# UNIVERSITY OF SWAZILAND 

## FINAL EXAMINATION 2011/2012

BSc./ BEd./B.A.S.S IV

TITLE OF PAPER : NUMERICAL ANALYSIS II

COURSE NUMBER : M 411

TIME ALLOWED : THREE (3) HOURS

INSTRUCTIONS
: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.
2. ANSWER ANY FIVE QUESTIONS.
3. NON PROGRAMMABLE

CALCULATORS MAY BE USED.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

## QUESTION 1

1. (a) Let $w(x)$ be an integrable function and let $I=[a, b]$ be an interval in $\mathbb{R}$. Also, let $S:=\left\{\phi_{0}(x), \phi_{1}(x), \ldots, \phi_{n}(x)\right\}$ be a set of functions that are defined on $I$.
i. What does it mean to say that $w$ is a weight function on $I$ ? [ 2 marks]
ii. What does it mean to say that $S$ is orthogonal on $I$ with respect to $w$ ?
iii. What does it mean to say that $S$ is linearly independent on $I$ ?
(b) Suppose $w(x)$ is a weight function on closed interval $[a, b]$, and suppose

$$
\begin{gathered}
\int_{a}^{b} w=1, \int_{a}^{b} w x=2 \\
\int_{a}^{b} w x^{2}=3, \int_{a}^{b} w x^{3}=6
\end{gathered}
$$

Take $\phi_{0}(x)=1$.
i. Determine polynomials $\phi_{1}(x)$ and $\phi_{2}(x)$ of degrees 1 and 2 respectively, so that $S:=\left\{\phi_{0}, \phi_{1}, \phi_{2}\right\}$ is an orthogonal set on $[a, b]$ with respect to $w$.
ii. Is $S$ linearly independent on [a,b]? Justify your answer. [2 marks]
(c) Give an example of a weight function $w(x)$ on the interval $(-1,1)$.
[2 marks]

## QUESTION 2

2. (a) Find the linear least squares polynomial approximation to $f(x)=\ln (x+2)$ on $[1,3]$.
[10 marks]
(b) Use Chebyshev polynomials of the first kind with degree at most 2 to approximate $\arccos (x)$.
[10 marks]

## QUESTION 3

3. (a) Approximate the integral $\int_{0}^{0.2} e^{-\tau^{2}} d r$ by using a single step of the Runge-Kutta method of order 2.
(b) Use a single step of the Runge-Kutta method of order 2 to solve:

$$
x^{\prime \prime}+x^{\prime}+3 x=t e^{t}, 0 \leq x \leq 1, x(0)=1, x^{\prime}(0)=0
$$

for $x(0.1)$ and $x^{\prime}(0.1)$ correct to 3 decimal places.

## QUESTION 4

4. Consider the initial value problem (IVP) $x^{\prime}(t)=f(t, x), a \leq t \leq b, x(a)=\alpha$
(a) Show that

$$
\begin{equation*}
x^{\prime}\left(t_{i}\right)=\frac{-3 x\left(t_{i}\right)+4 x\left(t_{i+1}\right)-x\left(t_{i+2}\right)}{2 h}+\frac{h^{3}}{3} x^{\prime \prime \prime}\left(\tau_{i}\right) \tag{1}
\end{equation*}
$$

for some $\tau_{i} \in\left(t_{i}, t_{i+2}\right)$.
(b) Let $h=0.05, x_{0}=x\left(t_{0}\right)=-1, x_{1}=x\left(t_{1}\right)=1-e^{-0.05}$. Use the method

$$
x_{i+2}=4 x_{i+1}-3 x_{i}-2 h f\left(t_{i}, x_{i}\right) ; i=0,1, \ldots, N-2
$$

suggested by equation (1) to solve IVP; $x^{\prime}=1+x, 0 \leq t \leq 1, x(0)=-1$ for $x(0.1)$.
[3 marks]
(c) State the Dalquist equivalence theorem for the convergence of a multistep method.
[2 marks]
(d) Analyse this method for consistency, zero-stability and convergence.
[11 marks]

## QUESTION 5

5. Let $\Omega$ be the $L$-shaped region in $\mathbb{R}^{2}$ enclosed by the polygonal path $\Gamma$ passing through the points $(0,0),(0,1),(1,1),(1,3),(3,3)$ and $(3,0)$.
(a) Consider the differential problem

$$
\begin{aligned}
u_{x x}(x, y)+u_{y y}(x, y) & =0,(x, y) \in \Omega \\
u(x, y) & =x+y,(x, y) \in \Gamma
\end{aligned}
$$

Use the "the 5 point formula" with a uniform grid on $\Omega$ to approximate both $u(2,1)$ and $u(2,2)$.
[10 marks]
(b) Given the Poisson equation

$$
u_{x x}(x, y)+u_{y y}(x, y)=x y,(x, y) \in \Omega
$$

subject to boundary condition

$$
u(x, y)=x+y,(x, y) \in \Gamma
$$

consider a finite difference method resulting from using central difference approximations for the derivatives. Use this method to approximate both $u(2,1)$ and $u(2,2)$.
[10 marks]

## QUESTION 6

6. Consider the differential problem;

$$
\begin{aligned}
u_{t}(x, t) & =u_{x x}(x, t), 0<x<1, t>0, \\
u_{x}(0, t) & =1, u_{x}(1, t)=0, t>0 \\
u(x, 0) & =x(1-x), 0 \leq x \leq 1
\end{aligned}
$$

Suppose that an approximate solution to this problem is determined by replacing $u_{t}$ with a forward difference, and that both $u_{x}$ and $u_{x x}$ are replaced by central differences.
(a) Show that the resulting finite difference equations may be written in matrix form as

$$
\mathbf{u}_{j+1}=B \mathbf{u}_{j}+\mathbf{v}, \text { where } j=0,1, \ldots
$$

Identify the square matrix $B$, and the vectors $\mathbf{u}_{j}$ and $\mathbf{v}$.
(b) Use this numerical scheme with $\Delta t=0.1$ and $\Delta x=0.5$ to approximate $u(0.5,0.1)$.

## QUESTION 7

7. (a) Show that the numerical scheme

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{k}=\frac{U_{j-1}^{n+1}-2 U_{j}^{n+1}+U_{j+1}^{n+1}}{h^{2}}
$$

for approximating the differential equation

$$
\begin{equation*}
u_{t}=u_{x x} \tag{2}
\end{equation*}
$$

is unconditionally stable.
(b) Show that the numerical scheme

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}+a \frac{U_{j}^{n}-U_{j-1}^{n}}{\Delta x}=0
$$

for approximating the differential equation

$$
u_{t}+a u_{x}=0,(a>0)
$$

is convergent provided $a \frac{\Delta t}{\Delta x} \leq 1$.
[10 marks]

