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QUESTION 1 

1. 	 (a) Let w(x) be an integrable function and let I = [a, b] be an interval in 
R. Also, let S:= {4>o(X),<Pl(X), ... ,<Pn(X)} be a set of functions that are 
defined on I. 

i. 	What does it mean to say that w is a weight function on I? [2 marks] 

ii. 	 What does it mean to say that S is orthogonal on I with respect to 
w? [2 marks] 

iii. 	 What does it mean to say that S is linearly independent on I? 
[2 marks] 

(b) Suppose w(x) is a weight function on closed interval [a,b]' and suppose 

lb w = 1, lb wx 2 

2lb wx 3, lb wx3 == 6 

Take <Po(x) = 1. 

i. 	Determine polynomials <PI (x) and <P2(X) of degrees 1 and 2 respectively, 
so that S := {4>0, <P1. <P2} is an orthogonal set on [a, b] with respect to 
w. 	 [10 marks] 

ii. 	 Is S linearly independent on [a, bJ? Justify your answer. [2 marks] 

(c) 	 Give an example of a weight function w(x) on the interval (-1,1). 

[2 marks] 

QUESTION 2 

2. 	 (a) Find the linear least squares polynomial approximation to f(x) = In(x+2) 
on [1,3]. [10 marks] 

(b) Use Chebyshev polynomials of the first kind with degree 	at most 2 to 
approximate arccos(x). [10 marks] 

QUESTION 3 

3. 	 (a) Approximate the integral JoO.2 e-T2 dr by using a single step of the 

Runge-Kutta method of order 2. [6 marks] 

(b) 	Use a single step of the Runge-Kutta method of order 2 to solve: 

x" +x' +3x = tet
, 0::5 x ::5 1, x(O) = 1, X'(O) = 0, 

for x(O.I) and x'(O.I) correct to 3 decimal places. [14 marks] 



QUESTION 4 

4. 	Consider the initial value problem (IVP) x'(t) = f(t,x), a::; t::; b, x(a) = a 

(a) Show that 

(1) 

for some Ti E (ti' ti+z), 	 [4 marks] 
05(b) Let h = 0.05, Xo = x(to) = -1, Xl = x(tl ) = 1- e-O. • Use the method 

suggested by equation (1) to solve IVP; x' = 1 +x, 0::; t::; 1, x(O) =-1 
for x(O.l). [3 marks] 

(c) 	 State the Dalquist equivalence theorem for the convergence of a multistep 
method. [2 marks] 

(d) Analyse this method for consistency, zero-stability and convergence. 

[11 marks] 

QUESTION 5 

5. 	 Let n be the L-shaped region in lRz enclosed by the polygonal path r passing 
through the points (0,0), (0, 1), (1, 1), (1,3), (3,3) and (3,0). 

(a) Consider the differential problem 

uxx(x, y) +uyy(x, y) =0, (x, y) E n 
u(x, y) =X + y, (x, y) E r 

Use the "the 5 point formula" with a uniform grid on n to approximate 
both u(2, 1) and u(2,2). [10 marks] 

(b) Given the Poisson equation 

uxx(x, y) +UIIII(X, y) =xy, (x, y) E n 

subject to boundary condition 

U(x, y) =X + y, (x, y) E r, 

consider a finite difference method resulting from using central difference 
approximations for the derivatives. Use this method to approximate both 
u(2, 1) and u(2,2). [10 marks] 



QUESTION 6 

6. Consider the differential problem; 

14 (x, t) =uxx(x, t), 0 < x < 1, t > 0, 

ux(O, t) =1, ux(l, t) = 0, t > 0, 

u(x,O) =x(l x), 0 ~ x ~ 1. 

Suppose that an approximate solution to this problem is determined by replac­
ing Ut with a forward difference, and that both U x and U xx are replaced by 
central differences. 

(a) Show that the resulting finite difference equations may be written in matrix 
form as 

Uj+l = BUj + v, where j =0,1, ... 

Identify the square matrix B, and the vectors Uj and v. [12 marks] 

(b) Use this numerical scheme with 6.t = 0.1 and ax 0.5 to approximate 
u(0.5,0.1). [8 marks] 

QUESTION 7 

7. (a) Show that the numerical scheme 

U~+l - U!'- U~+l - 2U~+l + U~+l 
j j _ )-1 j .1+1 

k - h2 

for approximating the differential equation 

(2) 

is unconditionally stable. [10 marks] 

(b) Show that the numerical scheme 

U~+l - U!'- U!'- - UT} 
) j +a) )-1 =0 

at ax 
for approximating the differential equation 

14 +aux =0, (a> 0) 

. 'ded 6.t 1IS convergent prOVI a ax ~ . [10 marks] 


