UNIVERSITY OF SWAZILAND 120

SUPPLEMENTARY EXAMINATION 2011/2012

BSc/ BEd/B.A.S.S IV

TITLE OF PAPER	:	NU	JMERICAL ANALYSIS II
COURSE NUMBER	:	М	411
TIME ALLOWED	:	THREE (3) HOURS	
INSTRUCTIONS	:	1.	THIS PAPER CONSISTS OF
			SEVEN QUESTIONS.
		2.	ANSWER ANY <u>FIVE</u> QUESTIONS.
		3.	NON PROGRAMMABLE
			CALCULATORS MAY BE USED.

SPECIAL REQUIREMENTS : NONE

Ł

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- 1. (a) Show that the Chebyshev polynomials $\{T_0(x), T_1(x), ...\}$ of the first kind are orthogonal on the open interval (-1, 1) with respect to the weight function $w(x) = 1/\sqrt{1-x^2}$. [10 marks]
 - (b) Suppose w(x) is a weight function on closed interval [a, b], and suppose

$$\int_{a}^{b} w = 1, \int_{a}^{b} wx = 3$$
$$\int_{a}^{b} wx^{2} = 4, \int_{a}^{b} wx^{3} = 8$$

Take $\phi_0(x) = 1$.

Determine polynomials $\phi_1(x)$ and $\phi_2(x)$ of degrees 1 and 2 respectively, so that $S := \{\phi_0, \phi_1, \phi_2\}$ is an orthogonal set on [a, b] with respect to w.

[10 marks]

QUESTION 2

- 2. (a) Find the linear least squares polynomial approximation to $f(x) = xe^x$ on [-1, 1]. [8 marks]
 - (b) Use Legendre polynomials of degree at most 2 to approximate e^x .

[12 marks]

QUESTION 3

3. (a) Use a single step of the modified Euler method to solve:

$$x'' + 2x' + x = t \ln t, \ 0 \le x \le 1, \ x(0) = 0, \ x'(0) = 1,$$

for x(0.1) and x'(0.1) correct to 3 decimal places. [14 marks]

(b) Approximate the integral $\int_{0}^{0.1} e^{\tau^2} d\tau$ by using a single step of the Taylor series method of order 2. Give your answer correct to 3 decimal places.

6 marks

QUESTION 4

4. The initial value problem (IVP)

$$x'(t) = f(t, x), \ a \le t \le b, \ x(a) = \alpha$$

may be solved using each of the following multistep methods with n = 0, 1, ..., N - 2.

(a)
$$x_{n+1} = 5x_{n-1} - 4x_n + 2h[f(t_n, x_n) + 2f(t_{n-1}, x_{n-1})]$$

(b) $x_{n+1} = -x_n + 2x_{n-1} + \frac{h}{2}[5f(t_n, x_n) + f(t_{n-1}, x_{n-1})]$

Analyse each method for consistency, zero-stability and convergence. [20 marks]

QUESTION 5

- 5. Let Ω be the *L*-shaped region in \mathbb{R}^2 enclosed by the polygonal path Γ passing through the points (0,0), (0,3), (1,3), (1,2), (3,2) and (3,0).
 - (a) Consider the Laplace equation

$$u_{xx}(x,y) + u_{yy}(x,y) = 0, \ (x,y) \in \Omega$$

subject to boundary condition

$$u(x,y) = xy, (x,y) \in \Gamma$$

Use the "the 5 point formula" with a uniform grid on Ω to approximate both u(1,1) and u(2,1). [10 marks]

(b) Given the Poisson equation

$$u_{xx}(x,y) + u_{yy}(x,y) = x + y, \ (x,y) \in \Omega$$

subject to boundary condition

$$u(x,y) = xy, (x,y) \in \Gamma,$$

consider a finite difference method resulting from using central difference approximations for the derivatives. Use this method to approximate both u(1,1) and u(2,1). [10 marks]

QUESTION 6

6. Consider the differential problem;

$$u_t(x,t) = u_{xx}(x,t), \ 0 < x < 1, \ t > 0,$$

$$u(0,t) = 1, \ u_x(1,t) = 0, \ t > 0,$$

$$u(x,0) = \sin(\pi x), \ 0 \le x \le 1.$$

Suppose that an approximate solution to this problem is determined by replacing u_t with a backward difference, and that both u_x and u_{xx} are replaced by central differences.

(a) Show that the resulting finite difference equations may be written in matrix form as

$$u_j = Bu_{j-1} + v$$
, where $j = 1, 2, ...$

Identify the square matrix B, and the vectors \mathbf{u}_j and \mathbf{v} . [12 marks]

(b) Use this numerical scheme with $\Delta t = 0.1$ and $\Delta x = 0.5$ to approximate u(0.5, 0.1). [8 marks]

QUESTION 7

7. (a) Show that the numerical scheme

$$\frac{U_j^{n+1} - U_j^n}{k} = \frac{U_{j-1}^n - 2U_j^n + U_{j+1}^n}{h^2}$$

for approximating the differential equation

$$u_t = u_{xx} \tag{1}$$

is stable provided $0 < \frac{k}{h^2} \leq \frac{1}{2}$.

(b) Determine the coefficients c_0, c_1 and c_{-1} so that the scheme

$$U_{i}^{n+1} = c_{-1}U_{i-1}^{n} + c_{0}U_{i}^{n} + c_{1}U_{i+1}^{n}$$

for approximating the differential equation

$$u_t + au_x = 0$$

agrees with the Taylor series expansion of $u(x_n, t_{n+1})$ to as high an order as possible when a > 0 is constant. [10 marks]

[10 marks]