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INSTRUCTIONS 1. 	 THIS PAPER CONSISTS OF 


SEVEN QUESTIONS. 
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QUESTION 1 

1. 	 (a) Show that the Chebyshev polynomials {To(x), T1(x), ... } of the first kind 
are orthogonal on the open interval (-I, 1) with respect to the weight 
function w{x) = l/vfl- x2 • [10 marks) 

(b) Suppose w(x) is a weight function on closed interval [a,b), and suppose 

Take <Po{x) = 1. 

Determine polynomials <PI (x) and <P2(X) of degrees 1 and 2 respectively, so 
that S := {<Po, <PI, <P2} is an orthogonal set on [a, b] with respect to w. 

[10 marks] 

QUESTION 2 

2. 	 (a) Find the linear h~ast squares polynomial approximation to f(x) = xeX on 
[-1,1]. [8 marks] 

(b) 	Use Legendre polynomials of degree at most 2 to approximate eX. 

[12 marks] 

QUESTION 3 

3. (a) 	Use a single step of the modified Euler method to solve: 

x" + 2x' + x = tInt, 0::; x ::; 1, x(O) = 0, x'(O) 1, 

for x(O.l) and x'(O.l) correct to 3 decimal places. [14 marks] 
rO.1 

T2(b) Approximate the integral Jo e dT by using a single step of the Taylor 

series method of order 2. Give your answer correct to 3 decimal places. 

[6 marks] 



QUESTION 4 

4. 	The initial value problem (IVP) 

x'(t) f(t,x), as t S b, x(a) = a 

may be solved using each of the following multistep methods with 


n = 0,1, ... , N - 2. 


(a) Xn+l = 5Xn-l - 4xn + 2h[f(tn, xn) + 2f(tn-l, Xn-l)] 

(b) Xn+l = -Xn + 2Xn-l + "2h 
[5f(tn, xn) + f(tn- ll Xn-l)] 

Analyse each method for consistency, zero-stability and convergence. [20 marks] 

QUESTION 5 

5. 	 Let fA be the L-shaped region in ]R2 enclosed by the polygonal path r passing 
through the points (0,0), (0,3), (1,3), (1,2), (3,2) and (3,0). 

(a) Consider the Laplace equation 

uxx(X, y) + Uyy(x, y) =0, (x, y) E fA 


subject to boundary condition 


u(X, y) =xy, (x, y) E r 

Use the "the 5 point formula" with a uniform grid on fA to approximate 
both u(l, 1) and u(2, 1). [10 marks] 

(b) Given the Poisson equation 

Uxx(X, y) + Uyy(x, y) =X + y, (x, y) E fA 


subject to boundary condition 


u(X, y) =xy, (x, Y) E r, 

consider a finite difference method resulting from using central difference 
approximations for the derivatives. Use this method to approximate both 
u(1, 1) and u(2, 1). [10 marks] 



QUESTION 6 

6. Consider the differential problem; 

Ut{x, t) =uxx{x, t), 0 < x < 1, t > 0, 

u{O, t) =1, ux(l, t) = 0, t > 0, 

u(x,O) = sin(7rx), 0 ~ x ~ 1. 

Suppose that an approximate solution to this problem is determined by replac
ing Ut with a backward difference, and that both Ux and Uxx are replaced by 
central differences. 

(a) Show that the resulting finite difference equations may be written in matrix 
form as 

Uj = BUj_1 + v, where j = 1,2, ... 

Identify the square matrix B, and the vectors Uj and v. [12 marks] 

(b) Use this numerical scheme with tlt = 0.1 and tlx = 0.5 to approximate 
u(0.5, 0.1). [8 marks] 

QUESTION 7 

7. (a) Show that the numerical scheme 

un+! _ un un 1 - 2U".1 + un+11 1 1- 1 1 

h2k 

for approximating the differential equation 

(1) 

is stable provided 0 < -b ~ ~. [10 marks] 

(b) Determine the coefficients Co, Cl and C-I so that the scheme 

for approximating the differential equation 

agrees with the Taylor series expansion of U(Xn' tn+d to as high an order 
as possible when a > 0 is constant. [10 marks] 


