UNIVERSITY OF SWAZILAND

 SUPPLEMENTARY EXAMINATION 2011/2012

 SUPPLEMENTARY EXAMINATION 2011/2012}

BSc/ BEd/B.A.S.S IV

TITLE OF PAPER : NUMERICAL ANALYSIS II
COURSE NUMBER : M 411
TIME ALLOWED : THREE (3) HOURS
INSTRUCTIONS : 1. THIS PAPER CONSISTS OF
SEVEN QUESTIONS.
2. ANSWER ANY FIVE QUESTIONS.
3. NON PROGRAMMABLE
CALCULATORS MAY BE USED.
SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) Show that the Chebyshev polynomials $\left\{T_{0}(x), T_{1}(x), \ldots\right\}$ of the first kind are orthogonal on the open interval $(-1,1)$ with respect to the weight function $w(x)=1 / \sqrt{1-x^{2}}$.
[10 marks]
(b) Suppose $w(x)$ is a weight function on closed interval $[a, b]$, and suppose

$$
\begin{gathered}
\int_{a}^{b} w=1, \int_{a}^{b} w x=3 \\
\int_{a}^{b} w x^{2}=4, \int_{a}^{b} w x^{3}=8
\end{gathered}
$$

Take $\phi_{0}(x)=1$.
Determine polynomials $\phi_{1}(x)$ and $\phi_{2}(x)$ of degrees 1 and 2 respectively, so that $S:=\left\{\phi_{0}, \phi_{1}, \phi_{2}\right\}$ is an orthogonal set on $[a, b]$ with respect to w.
[10 marks]

QUESTION 2

2. (a) Find the linear least squares polynomial approximation to $f(x)=x e^{x}$ on $[-1,1]$.
(b) Use Legendre polynomials of degree at most 2 to approximate e^{x}.
[12 marks]

QUESTION 3

3. (a) Use a single step of the modified Euler method to solve:

$$
x^{\prime \prime}+2 x^{\prime}+x=t \ln t, 0 \leq x \leq 1, x(0)=0, x^{\prime}(0)=1,
$$

for $x(0.1)$ and $x^{\prime}(0.1)$ correct to 3 decimal places.
[14 marks]
(b) Approximate the integral $\int_{0}^{0.1} e^{\tau^{2}} d \tau$ by using a single step of the Taylor series method of order 2 . Give your answer correct to 3 decimal places.

QUESTION 4

4. The initial value problem (IVP)

$$
x^{\prime}(t)=f(t, x), a \leq t \leq b, x(a)=\alpha
$$

may be solved using each of the following multistep methods with $n=0,1, \ldots, N-2$.
(a) $x_{n+1}=5 x_{n-1}-4 x_{n}+2 h\left[f\left(t_{n}, x_{n}\right)+2 f\left(t_{n-1}, x_{n-1}\right)\right]$
(b) $x_{n+1}=-x_{n}+2 x_{n-1}+\frac{h}{2}\left[5 f\left(t_{n}, x_{n}\right)+f\left(t_{n-1}, x_{n-1}\right)\right]$

Analyse each method for consistency, zero-stability and convergence.[20 marks]

QUESTION 5

5. Let Ω be the L-shaped region in \mathbb{R}^{2} enclosed by the polygonal path Γ passing through the points $(0,0),(0,3),(1,3),(1,2),(3,2)$ and $(3,0)$.
(a) Consider the Laplace equation

$$
u_{x x}(x, y)+u_{y y}(x, y)=0,(x, y) \in \Omega
$$

subject to boundary condition

$$
u(x, y)=x y,(x, y) \in \Gamma
$$

Use the "the 5 point formula" with a uniform grid on Ω to approximate both $u(1,1)$ and $u(2,1)$.
[10 marks]
(b) Given the Poisson equation

$$
u_{x x}(x, y)+u_{y y}(x, y)=x+y,(x, y) \in \Omega
$$

subject to boundary condition

$$
u(x, y)=x y,(x, y) \in \Gamma,
$$

consider a finite difference method resulting from using central difference approximations for the derivatives. Use this method to approximate both $u(1,1)$ and $u(2,1)$.

QUESTION 6

6. Consider the differential problem;

$$
\begin{aligned}
u_{t}(x, t) & =u_{x x}(x, t), 0<x<1, t>0 \\
u(0, t) & =1, u_{x}(1, t)=0, t>0 \\
u(x, 0) & =\sin (\pi x), 0 \leq x \leq 1
\end{aligned}
$$

Suppose that an approximate solution to this problem is determined by replacing u_{t} with a backward difference, and that both u_{x} and $u_{x x}$ are replaced by central differences.
(a) Show that the resulting finite difference equations may be written in matrix form as

$$
\mathbf{u}_{j}=B \mathbf{u}_{j-1}+\mathbf{v}, \text { where } j=1,2, \ldots
$$

Identify the square matrix B, and the vectors \mathbf{u}_{j} and \mathbf{v}.
(b) Use this numerical scheme with $\Delta t=0.1$ and $\Delta x=0.5$ to approximate $u(0.5,0.1)$.

QUESTION 7

7. (a) Show that the numerical scheme

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{k}=\frac{U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}}{h^{2}}
$$

for approximating the differential equation

$$
\begin{equation*}
u_{t}=u_{x x} \tag{1}
\end{equation*}
$$

is stable provided $0<\frac{k}{h^{2}} \leq \frac{1}{2}$.
(b) Determine the coefficients c_{0}, c_{1} and c_{-1} so that the scheme

$$
U_{j}^{n+1}=c_{-1} U_{j-1}^{n}+c_{0} U_{j}^{n}+c_{1} U_{j+1}^{n}
$$

for approximating the differential equation

$$
u_{t}+a u_{x}=0
$$

agrees with the Taylor series expansion of $u\left(x_{n}, t_{n+1}\right)$ to as high an order as possible when $a>0$ is constant.

