University of Swaziland

Final Examination, December 2011

BSc IV, Bass IV, BEd IV

Title of Paper : Partial Differential Equations
Course Number : M415
Time Allowed : Three (3) Hours

Instructions :

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions. Submit solutions to ONLY FIVE questions.
4. Show all your working.
5. A Table of Laplace Transforms is provided at the end of the question paper.

Question 1

(a) Find the general solution for the following pde

$$
(x+y)\left(x u_{x}-y u_{y}\right)=\left(x^{2}-y^{2}\right)(2 x y-u) .
$$

[10 marks]
(b) Find a particular solution of the given pde that passes through the given curve Γ

$$
\begin{aligned}
& 3 y u_{x}-2 x u_{y}=0, \quad x \neq 0, y \neq 0 \\
& \Gamma: \quad u=2 x \text { on } 3 y^{2}=4
\end{aligned}
$$

[10 marks]

Question 2

(a) By eliminating the arbitrary function, find the pde satisfied by

$$
u(x, y)=e^{a x} f\left(b x+c y+u^{3}\right) .
$$

(b) Determine the regions in which the pde

$$
x u_{x x}+\sqrt{y} u_{x y}+x u_{y y}=e^{x}
$$

is elliptic, hyperbolic and parabolic.
(c) Reduce the following pde to canonical form and find the general solution

$$
u_{x x}+2 u_{x y}-3 u_{y y}=0
$$

Question 3

(a) Find a relationship between a and b if $u=f(a x+b y)$ is a solution of the pde

$$
3 u_{x}-7 u_{y}=0
$$

for any differentiable function f.
(b) Show that

$$
\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}=\left(\frac{\partial F}{\partial \xi}\right)^{2}+\frac{1}{\xi^{2}}\left(\frac{\partial F}{\partial \eta}\right)^{2}
$$

under the transformation $x=\xi \cos \eta, y=\xi \sin \eta$.

Question 4

Consider the function

$$
f(x)=\left\{\begin{array}{ll}
\pi+x, & -\pi \leq x<0 ; \\
\pi, & x=0 ; \\
\pi-x, & 0<x \leq \pi
\end{array}, \quad f(x+2 \pi)=f(x)\right.
$$

(a) Find the fourier series expansion for $f(x)$.
(b) Use Parseval's identity to find the value of the sum

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}} .
$$

[10 marks]

Question 5

Solve the following initial value value problem

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad 0<x<30, \quad t>0 \\
& u(0, t)=20, \quad u(30, t)=50, \quad t>0 \\
& u(x, 0)=60+x, \quad 0<x<30
\end{aligned}
$$

using the method os separation of variables.
[20 marks]

Question 6

Solve the following equations using the method of Laplace transforms
(a)

$$
\begin{aligned}
& u_{x t}+\sin t=0, \quad x>0, \quad t>0 \\
& u(x, 0)=x, \quad x \geq 0 \\
& u(0, t)=0, \quad t \geq 0
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x u_{x}+u_{t}=x, \quad x>0, \quad t>0 \\
& u(x, 0)=0, \quad x \geq 0 \\
& u(0, t)=0, \quad t \geq 0
\end{aligned}
$$

Question 7

Solve the Dirichlet problem inside the circle

$$
\begin{aligned}
& u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad 0<r<1, \quad-\pi<\theta<\pi \\
& u(1, \theta)= \begin{cases}1, & -\pi<x<0 ; \\
2, & 0<x<\pi .\end{cases}
\end{aligned}
$$

Table of Laplace Transforms

$f(t)$	$F(s)$
t^{n}	$\frac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
$e^{a t}$	$\frac{1}{s-a}$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$
$\frac{1}{a-b}\left(e^{a t}-e^{b t}\right)$	$\frac{1}{(s-a)(s-b)}$
$\frac{1}{a-b}\left(a e^{a t}-b e^{b t}\right)$	$\frac{s}{(s-a)(s-b)}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\sin (a t)-a t \cos (a t)$	$\frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}}$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos (b t)$	
$\sinh (a t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$\cosh (a t)$	$\frac{a}{s^{2}-a^{2}}$
$\frac{d^{n} f}{d t^{n}}(t)$	$\frac{s}{s^{2}-a^{2}}$
$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$	
$s^{4}+4 a^{4}$	

