University of Swaziland

Supplementary Examination, July 2012

BSc IV, Bass IV, BEd IV

Title of Paper : Partial Differential Equations
Course Number : M415
Time Allowed : Three (3) Hours

Instructions :

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions. Submit solutions to ONLY FIVE questions.
4. Show all your working.
5. A Table of Laplace Transforms is provided at the end of the question paper.

Question 1

Consider the equation

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0 \\
& u(x, 0)=f(x) \\
& u_{t}(x, 0)=g(x)
\end{aligned}
$$

(a) Find the characteristics.
(b) Reduce the pde to its canonical form.
(c) Hence or otherwise show that the solution is given by

$$
u(x, t)=\frac{f(x-c t)+f(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\tau) d \tau
$$

Question 2

(a) Determine the region in which the given pdes are elliptic, hyperbolic and parabolic
(i) $\sin ^{2} x u_{x x}-2 y \sin x u_{x y}+y^{2} u_{y y}=0$.
(ii) $e^{x} u_{x x}+e^{y} u_{y y}+e^{x+y} u_{x}=0$.
(b) Find the characteristics for the pde

$$
x u_{x x}+u_{y y}=x^{2} .
$$

(c) Reduce the following pde to canonical form and find the general solution

$$
u_{x x}+5 u_{x y}+6 u_{y y}=0 .
$$

Question 3

Consider the function

$$
f(x)=\left\{\begin{array}{ll}
-1, & -\pi \leq x<0 ; \\
0, & x=0 ; \\
+1, & 0<x \leq \pi .
\end{array}, \quad f(x+2 \pi)=f(x)\right.
$$

(a) Find the fourier series expansion for $f(x)$.
(b) Use Parseval's identity to find the value of the sum

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

[10 marks]

Question 4

Solve the initial value problem

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x} \quad 0<x<1, \quad t>0 \\
& u(x, 0)=0, \quad 0 \leq x \leq 1 \\
& u_{t}(x, 0)=0, \quad 0 \leq x \leq 1 \\
& u(0, t)=u(1, t)=0, \quad t \geq 0
\end{aligned}
$$

using the method of separation of variables.

Question 5

(a) Solve the following pde using the method of Laplace transforms

$$
\begin{aligned}
& u_{t}=u_{x}+u, \quad x>0, \quad t>0 \\
& u(x, 0)=e^{-4 x}, \quad x \geq 0 \\
& \lim _{x \rightarrow \infty}|u(x, t)|<\infty, \quad t>0
\end{aligned}
$$

(b) Find the general solution for the following pde

$$
4 u_{x}+8 u_{y}-u=1
$$

Question 6

Find the general solution for each of the following pdes
(a) $u\left(u_{x}-u_{y}\right)=u^{2}+(x+y)^{2}$.
(b) $\left(x u_{x}-y u_{y}\right) u=y^{2}-x^{2}$.

Question 7

Solve the following initial value problem

$$
\begin{aligned}
& u_{t}-k u_{x x}=0, \quad 0<x<L, \quad t>0 \\
& u(0, t)=u(L, t)=0, \quad t \geq 0 \\
& u(x, 0)=f(x), \quad 0 \leq x \leq L
\end{aligned}
$$

where L is a constant and $f(x)$ is an arbitrary function.

Table of Laplace Transforms

$f(t)$	$F(s)$
t^{n}	$\frac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
$e^{a t}$	$\frac{1}{s-a}$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$
$\frac{1}{a-b}\left(e^{a t}-e^{b t}\right)$	$\frac{1}{(s-a)(s-b)}$
$\frac{1}{a-b}\left(a e^{a t}-b e^{b t}\right)$	$\frac{s}{(s-a)(s-b)}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\sin (a t)-a t \cos (a t)$	$\frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}}$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$
$\sin (a t) \sinh (a t)$	$\frac{2 a^{2}}{s^{4}+4 a^{4}}$
$\frac{d^{n} f}{d t^{n}}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$

