UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2011/2012

B.Sc. / B.Ed. / B.A.S.S. IV

TITLE OF PAPER	:	Metric Spaces
COURSE NUMBER	:	M431
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS.
SPECIAL REQUIREMENTS	:	2. ANSWER ANY <u>FIVE</u> QUESTIONS NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- (a) Let X be a nonempty set with a map $d : X \times X \longrightarrow \mathbb{R}$. What is meant by saying that (X, d) is a *metric space*? [4]
- (b) Check carefully that the set $X = \mathbb{C}$, equipped with the function d defined, for any $x, y \in \mathbb{C}$, by

$$d(x,y) = \begin{cases} \min\{|x| + |y|, |x-1| + |y-1|\} & \text{if } x = y \\ 0 & \text{otherwise,} \end{cases}$$

is a metric on \mathbb{C} .

QUESTION 2

- (a) Give the definition of a pseudometric.
- (b) Let (X, d) be a metric space. Given any four points $x, y, z, t \in X$, prove that $|d(x, y) - d(z, t)| \le |d(x, z) + d(y, t)|.$ [6]
- (c) A translation T : ℝ² → ℝ² is a map given by T(x) = (x₁ + a, x₂ + b) for some fixed point (a, b) ∈ ℝ², where x = (x₁, x₂) ∈ ℝ². Prove that the Euclidian metric d₂ on ℝ² is translation invariant, in the sense that for any two points x = (x₁, x₂) and y = (y₁, y₂) in ℝ², we have

$$d_2(T(x), T(y)) = d_2(x, y).$$

(d) In each of the following cases, state with careful justification whether (X, d) is a metric space:

(i)
$$X = \mathbb{Q}$$
 equipped with $d(x, y) = (x - y)^3$;
(ii) $X = \mathbb{Q}^c = \mathbb{R} \setminus \mathbb{Q}$ equipped with $d(x, y) = \left| \frac{1}{x} - \frac{1}{y} \right|$. [2,3]

[16]

[4]

[5]

- (a) Let $X = \mathcal{C}[-1, 1]$, and let x(t) = t and $y(t) = t^3$ for $t \in [-1, 1]$. Find d(x, y) in $\mathcal{C}[-1, 1]$, where d is the
 - (i) uniform metric,
 - (ii) L_1 -metric, [3,2]
- (b) Give an example of a subset A of ℝ (equipped with the usual metric) such that diam(A°) < diam(A).
 [3]
- (c) Let A be an open subset of a metric space (X, d), and let $a \in A$. Is the set $A \setminus \{a\}$ open or closed in X? Justify your answer. [3]
- (d) Let Y be a subspace of the metric space X. Prove the following:
 - (i) $B \subseteq Y$ is open in Y if and only if $B = Y \cap A$ for some open set A in X;[6]
 - (ii) $B \subseteq Y$ is closed in Y if and only if $B = Y \cap F$ for some closed set in X.[3]

QUESTION 4

- (a) Let (X,d) be a metric space and (x_n) be a sequence in X. What is meant by saying that (x_n) is convergent? [2]
- (b) Decide whether or not the following sequences are convergent in the usual (Euclidean) metric on R²:

(i)
$$x_n = \left(\frac{n^3}{2n^3+1}, \frac{1}{n+2}\sin(\frac{n\pi}{2})\right),$$

(ii) $x_n = (3^{-2n}, (-1)^n \exp(\frac{1}{n})).$ [4,4]

(c) (i) Suppose that (x_n) converges to x in C [a, b] in the uniform metric. Explain what is meant by *pointwise convergence*. Show that (x_n) converges to x pointwise.

(ii) Let x_n in C[0,1] be defined by

$$x_n(t) = \begin{cases} nt & \text{if } 0 \le t \le \frac{1}{n}, \\ 1 & \text{if } \frac{1}{n} \le t \le 1. \end{cases}$$

Sketch the graph of $x_n(t)$ and show that (x_n) converges pointwise to the function

$$x(t) = \left\{ egin{array}{ccc} 0 & ext{if} & t = 0, \ 1 & ext{if} & 0 < t \leq 1 \end{array}
ight.$$

Deduce that (x_n) is not convergent in C[0,1] with the uniform metric. [1,2,2]

QUESTION 5

(a) Given a function $f:(X, d_1) \longrightarrow (X, d_2)$,

- (i) When is f said to be continuous at a point $x_0 \in X$ in the $\varepsilon \delta$ sense? [3]
- (ii) Give an equivalent definition in terms of open sets. [4]
- (iii) Assuming f is continuous at x_0 , prove that

$$x_n \to x_0 \Rightarrow f(x_n) \to f(x_0).$$

[6]

(b) Prove that the function π : ℝ² → ℝ defined by π(x, y) = x is continuous when ℝ² and ℝ are equipped with their usual metrics. Is π uniformly continuous? Justify your answer.

- (a) Can you find metric spaces (X, d) where
 - (i) [0,1] is both closed and open? [2]
 - (ii) $[0, \frac{1}{2})$ is open but not closed? [2]
- (b) (i) Let X be a metric space. Using the definition that a set is open if its complement is closed, prove that A ⊆ X is open if and only if for every a ∈ A there is an r > 0 such that the open ball B(a, r) ⊆ A. [4]
 - (ii) Let X = C[-1,1]. By considering the point a(t) ≡ 1 (i.e. a(t) = 1 ∀ t ∈ [-1,1]) in C[-1,1], deduce that A = {x ∈ C[-1,1] : x(0) = 1} is not open in C[-1,1] with the uniform metric. [3]
- (c) Let X be a nonempty set and let ρ and σ be metrics on X. We say that ρ and σ are *equivalent* if there exist positive constants α and β such that

$$\alpha \leq \frac{\rho(x,y)}{\sigma(x,y)} \leq \beta$$
 for all $, y \in X$ with $x \neq y$.

Prove that if ρ and σ are equivalent metrics on X, then (X, ρ) and (X, σ) have the same open sets. [5]

(d) Let X = (ℝ, d), and let A = ⋃_{n∈ℤ≥0} (n, n + 1), where ℤ_{≥0} = {0, 1, 2, ...}. Sketch the set A, and decide whether A is an open subset, or a closed subset, or neither, of ℝ. Then find A°, Ā, and ∂(A).

(a)	Let X be a metric space. When is a subset $M \subseteq X$ said to be:	
	(i) bounded;	[1]
	(ii) totally bounded.	[2]
(b)	Define compactness of a metric space in terms of	
	(i) open coverings,	[1]
	(ii) sequences.	[2]
(c)	Show that a compact set is closed and bounded.	[8]
(d)	Which of the following sets is compact? Give reasons.	
	(i) $\{(x,y): 0 \le x \le y \le 1\}$ in \mathbb{R}^2 ,	[3]

(ii)
$$\{1, \frac{1}{3}, \frac{1}{3^2}, \dots, \frac{1}{3^n}, \dots\}$$
 in \mathbb{R} , where $n \in \mathbb{N}$. [3]

END OF EXAMINATION