UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2011/2012

B.Sc. / B.Ed. / B.A.S.S. IVTITLE OF PAPER : Metric SpacesCOURSE NUMBER : M431

TIME ALLOWED : THREE (3) HOURS
INSTRUCTIONS : 1. THIS PAPER CONSISTS OFSEVEN QUESTIONS.
2. ANSWER ANY FIVE QUESTIONS
SPECIAL REQUIREMENTS NONE

QUESTION 1

(a) Let X be a nonempty set with a map $d: X \times X \longrightarrow \mathbb{R}$. What is meant by saying that (X, d) is a metric space?
(b) Check carefully that the set $X=\mathbb{C}$, equipped with the function d defined, for any $x, y \in \mathbb{C}$, by

$$
d(x, y)= \begin{cases}\min \{|x|+|y|,|x-1|+|y-1|\} & \text { if } x=y \tag{16}\\ 0 & \text { otherwise }\end{cases}
$$

is a metric on \mathbb{C}.

QUESTION 2

(a) Give the definition of a pseudometric.
(b) Let (X, d) be a metric space. Given any four points $x, y, z, t \in X$, prove that $|d(x, y)-d(z, t)| \leq|d(x, z)+d(y, t)|$.
(c) A translation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is a map given by $T(x)=\left(x_{1}+a, x_{2}+b\right)$ for some fixed point $(a, b) \in \mathbb{R}^{2}$, where $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Prove that the Euclidian metric d_{2} on \mathbb{R}^{2} is translation invariant, in the sense that for any two points $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in \mathbb{R}^{2}, we have

$$
d_{2}(T(x), T(y))=d_{2}(x, y)
$$

(d) In each of the following cases, state with careful justification whether (X, d) is a metric space:
(i) $X=\mathbb{Q}$ equipped with $d(x, y)=(x-y)^{3}$;
(ii) $X=\mathbb{Q}^{c}=\mathbb{R} \backslash \mathbb{Q}$ equipped with $d(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right|$.

QUESTION 3

(a) Let $X=\mathcal{C}[-1,1]$, and let $x(t)=t$ and $y(t)=t^{3}$ for $t \in[-1,1]$. Find $d(x, y)$ in $\mathcal{C}[-1,1]$, where d is the
(i) uniform metric,
(ii) $L_{1}-$ metric,
(b) Give an example of a subset A of \mathbb{R} (equipped with the usual metric) such that $\operatorname{diam}\left(A^{\circ}\right)<\operatorname{diam}(A)$.
(c) Let A be an open subset of a metric space (X, d), and let $a \in A$. Is the set $A \backslash\{a\}$ open or closed in X ? Justify your answer.
(d) Let Y be a subspace of the metric space X. Prove the following:
(i) $B \subseteq Y$ is open in Y if and only if $B=Y \cap A$ for some open set A in $X ;[6]$
(ii) $B \subseteq Y$ is closed in Y if and only if $B=Y \cap F$ for some closed set in X.[3]

QUESTION 4

(a) Let (X, d) be a metric space and $\left(x_{n}\right)$ be a sequence in X. What is meant by saying that $\left(x_{n}\right)$ is convergent?
(b) Decide whether or not the following sequences are convergent in the usual (Euclidean) metric on \mathbb{R}^{2} :
(i) $x_{n}=\left(\frac{n^{3}}{2 n^{3}+1}, \frac{1}{n+2} \sin \left(\frac{n \pi}{2}\right)\right)$,
(ii) $x_{n}=\left(3^{-2 n},(-1)^{n} \exp \left(\frac{1}{n}\right)\right)$.
(c) (i) Suppose that $\left(x_{n}\right)$ converges to x in $C[a, b]$ in the uniform metric. Explain what is meant by pointwise convergence. Show that (x_{n}) converges to x pointwise.
(ii) Let x_{n} in $C[0,1]$ be defined by

$$
x_{n}(t)=\left\{\begin{array}{lll}
n t & \text { if } & 0 \leq t \leq \frac{1}{n} \\
1 & \text { if } & \frac{1}{n} \leq t \leq 1
\end{array}\right.
$$

Sketch the graph of $x_{n}(t)$ and show that $\left(x_{n}\right)$ converges pointwise to the function

$$
x(t)=\left\{\begin{array}{lll}
0 & \text { if } t=0 \\
1 & \text { if } & 0<t \leq 1
\end{array}\right.
$$

Deduce that $\left(x_{n}\right)$ is not convergent in $C[0,1]$ with the uniform metric. [1,2,2]

QUESTION 5

(a) Given a function $f:\left(X, d_{1}\right) \longrightarrow\left(X, d_{2}\right)$,
(i) When is f said to be continuous at a point $x_{0} \in X$ in the $\varepsilon-\delta$ sense? [3]
(ii) Give an equivalent definition in terms of open sets.
(iii) Assuming f is continuous at x_{0}, prove that

$$
x_{n} \rightarrow x_{0} \Rightarrow f\left(x_{n}\right) \rightarrow f\left(x_{0}\right) .
$$

(b) Prove that the function $\pi: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ defined by $\pi(x, y)=x$ is continuous when \mathbb{R}^{2} and \mathbb{R} are equipped with their usual metrics. Is π uniformly continuous? Justify your answer.

QUESTION 6

(a) Can you find metric spaces (X, d) where
(i) $[0,1]$ is both closed and open?
(ii) $\left[0, \frac{1}{2}\right)$ is open but not closed?
(b) (i) Let X be a metric space. Using the definition that a set is open if its complement is closed, prove that $A \subseteq X$ is open if and only if for every $a \in A$ there is an $r>0$ such that the open ball $B(a, r) \subseteq A$.
(ii) Let $X=\mathcal{C}[-1,1]$. By considering the point $a(t) \equiv 1$ (i.e. $a(t)=1 \forall t \in$ $[-1,1])$ in $\mathcal{C}[-1,1]$, deduce that $A=\{x \in \mathcal{C}[-1,1]: x(0)=1\}$ is not open in $\mathcal{C}[-1,1]$ with the uniform metric.
(c) Let X be a nonempty set and let ρ and σ be metrics on X. We say that ρ and σ are equivalent if there exist positive constants α and β such that

$$
\alpha \leq \frac{\rho(x, y)}{\sigma(x, y)} \leq \beta \text { for all }, y \in X \text { with } x \neq y .
$$

Prove that if ρ and σ are equivalent metrics on X, then (X, ρ) and (X, σ) have the same open sets.
(d) Let $X=(\mathbb{R}, d)$, and let $A=\bigcup_{n \in \mathbb{Z} \geq 0}(n, n+1)$, where $\mathbb{Z}_{\geq 0}=\{0,1,2, \ldots\}$. Sketch the set A, and decide whether A is an open subset, or a closed subset, or neither, of \mathbb{R}. Then find A°, \bar{A}, and $\partial(A)$.

QUESTION 7

(a) Let X be a metric space. When is a subset $M \subseteq X$ said to be:
(i) bounded;
(ii) totally bounded.
(b) Define compactness of a metric space in terms of
(i) open coverings,
(ii) sequences.
(c) Show that a compact set is closed and bounded.
(d) Which of the following sets is compact? Give reasons.
(i) $\{(x, y): 0 \leq x \leq y \leq 1\}$ in \mathbb{R}^{2},
(ii) $\left\{1, \frac{1}{3}, \frac{1}{3^{2}}, \ldots, \frac{1}{3^{n}}, \ldots\right\}$ in \mathbb{R}, where $n \in \mathbb{N}$.

