UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/12

BSC IV

TITLE OF PAPER	$:$	FLUID DYNAMICS
COURSE NUMBER	$:$	M455
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
	2. ANSWER ANY FIVE QUESTIONS	
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

USEFUL FORMULAE

The gradient of a function $\psi(r, \theta, z)$ in cylindrical coordinates is

$$
\nabla \psi=\frac{\partial \psi}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{\theta}+\frac{\partial \psi}{\partial z} \hat{k}
$$

The divergence and curl of the vector field

$$
\underline{v}=v_{r} \hat{r}+v_{\theta} \hat{\theta}+v_{z} \hat{k}
$$

in cylindrical coordinates are

$$
\nabla \cdot \underline{v}=\frac{1}{r}\left\{\frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{\partial}{\partial \theta}\left(v_{\theta}\right)+\frac{\partial}{\partial z}\left(r v_{z}\right)\right\}
$$

and

$$
\nabla \times \underline{v}=\frac{1}{r} \operatorname{det}\left[\begin{array}{ccc}
\hat{r} & r \hat{\theta} & \hat{k} \\
\frac{\partial}{\partial \tau} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
v_{r} & r v_{\theta} & v_{z}
\end{array}\right]
$$

The divergence of a vector

$$
\underline{v}=v_{r} \hat{r}+v_{\lambda} \hat{\lambda}+v_{\theta} \hat{\theta}
$$

in spherical coordinates

$$
\nabla \cdot \underline{v}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} v_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial v_{\lambda}}{\partial \lambda}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta v_{\theta}\right)}{\partial \theta}
$$

The convective derivative and Laplacian in cylindrical coordinates are

$$
\begin{aligned}
& \frac{D}{D t}=\frac{\partial}{\partial t}+v_{r} \frac{\partial}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial}{\partial \theta}+v_{z} \frac{\partial}{\partial z} \\
& \nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{aligned}
$$

Identities

$$
\begin{aligned}
\underline{v} \cdot \nabla \underline{v} & =\nabla\left(\frac{v^{2}}{2}\right)-\underline{v} \times \underline{\underline{w}} \\
\nabla \times(\nabla \times \underline{a}) & =\nabla \nabla \cdot \underline{a}-\nabla^{2} \underline{a}
\end{aligned}
$$

QUESTION 1

(a) Describe density of the air at a point.
(b) For the Lagrangian method describe
(i) trajectory,
(ii) velocity,
(iii) acceleration.
[2,2,2]
(c) A velocity field is specified as
$\bar{V}=a x^{2} \bar{i}+b x y \bar{j}, \quad$ where $a=2 /(m . s), \quad b=-4 /(m . s)$, and the coordinates are measured in meters.
(i) Is the flow field one -, two-, or three- dimensional? Explain.
(ii) Calculate the velocity components at the point $\left(2, \frac{1}{2}, 0\right)$.
(iii) Develop an equation for the streamline passing through this point.
(d) Derive the formula for convective derivative of the density.

QUESTION 2

(a) Which of the following sets of equations represent possible two-dimensional incompressible flow cases? Explain.
(i) $u=x+y, \quad v=x-y ;$
(ii) $u=x+2 y, \quad v=x^{2}-y^{2}$;
(iii) $u=x t+2 y, \quad v=x^{2}-y t^{2}$.
(b) The stream function for a certain incompressible flow is given as $\psi=A x y, A$ is a constant.
(i) Plot several stream lines, including $\psi=0$,
(ii) Obtain an expression for the velocity field
(c) (i) Prove that $\bar{V}=\nabla \psi+\bar{k}$ and thus
(ii) Show $v_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad v_{\theta}=-\frac{\partial \psi}{\partial r}$.
(d) The stream function for a certain incompressible flow is given as $\psi(r, \theta)=-U r \sin \theta+\frac{q \theta}{2 \pi}$, where U represents the free stream velocity.
(i) obtain an expression for the velocity field,
(ii) find the stagnation points, and
(iii) show that $\psi=0$ there.

QUESTION 3

(a) Cousider a piston-cylinder apparatus. At one instant when the piston is $L_{0}=0.15 m$ away from the closed end of the cylinder, the gas density is uniform at $\rho=18 \mathrm{~kg} / \mathrm{m}^{3}$ and the piston begins to move away from the closed end at $V=12 \mathrm{~m} / \mathrm{s}$. The gas motion is one-dimensional and proportional to the distance from the closed end; it varies linearly from zero at the end to $u=V$ at the piston.
(i) Evaluate the rate of change of gas density at this instant.
(ii) Obtain an expression for the average density as a function of time.

HINT: Density ρ is independent of x.
(b) Let $\bar{V}=\frac{m}{r^{2}} \bar{e}_{r}$ in spherical coordinates.
(i) Show that \bar{V} satisfies the continuity equation for incopressible flow, except at the origin O.
(ii) Let O be lye on a smooth surface S. What is the volume flow rate through S ?

QUESTION 4

a) Evaluate the circulation of a line vortex.
b) The vorticity of a certain incompressible flow is given by the following formula
$\varpi=\left\{\begin{array}{ccc}-A r \sin \theta, & \text { for } & r<a \\ 0, & \text { for } & r>a\end{array}\right.$
Find the corresponding stream function.
HINT: $\nabla+(\nabla+\bar{A})=\nabla \nabla \cdot \bar{A}-\nabla^{2} \bar{A}$.
(c) A flow is respresented by the velocity field
$\bar{V}=10 x \bar{i}-10 y j+30 \bar{k}$.
Determine if the field is
(i) a possible incompressible flow,
(ii) irrational.

QUESTION 5

a) A cylindrical container, partly filled with liquid, is rotated at a constant angular velocity ω about the vertical axis. After a short time there is no relative motion, the liquid rotates as a rigid body. Using the Euler equation determine the shape of the free surface if the radius of cylinder is R and the original surface height in the absence of rotation is h_{0}.
b) The velocity distribution for laminar flow between fixed parallel plates is given by

$$
u=u_{\max }\left[1-\left(\frac{2 y}{h}\right)^{2}\right]
$$

where h is the distance separating the plates and the origin is placed midway between the plates.
Consider $\mu=1.1+10^{-3} \mathrm{~kg} / \mathrm{ms}, \quad u_{\max }=0.3 \mathrm{~m} / \mathrm{s}, \quad h=0.5 \mathrm{~mm}$. Calculate
(i) the shear stress on the upper plate and give direction,
(ii) the force on a $0.5 \mathrm{~m}^{2}$ section of the upper plate and give its direction.
(c) Write Navier-Stokes equation for incompressible flow.

QUESTION 6

a) An incopressible flow field is given by
$\bar{V}=(A x+B y) \bar{i}-A y \bar{j}$, where $A=1 s^{-2}, B=2 s^{-2}$, the coordinates are in meters.
(i) Find the acceleration of a fluid particle at point $(x, y)=(1,2)$.
(ii) Find the pressure gradient at the same piont, if $\bar{g}=-g \bar{j}$, and fluid is water, $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.
b) The plane $y=0$ oscilates so that its velocity is in the plane $y=0$ and has magnitude $V \cos \omega t$, where V and ω are constants. Above the plane there is viscous incompressible fluid. Body forces are negligible.
(i) Show that
$\frac{\partial u}{\partial t}=\gamma \frac{\partial^{2} u}{\partial y^{2}}$,
(ii) Separate variables to show that

$$
\begin{equation*}
u(y, t)=\operatorname{Re}\left\{V \exp \left(i \omega t-\sqrt{\frac{i \omega}{\gamma}} y\right)\right\} \tag{5,5}
\end{equation*}
$$

QUESTION 7

a) Derive the mass conservation equation for incompressible flow in dimensionless form.
b) (i) Define similar flow, and
(ii) Explain how the idea of similarity is used to design the experimental models.
c) Water flows steadily up a vertieal 0.1 m diameter pipe and out the nozzle, which is 0.05 m in diameter, discharging to atmospheric pressure. The stream velocity at the nozzle exit must be $20 \mathrm{~m} / \mathrm{s}$. The flow is frictionless. The pipe is 4 m long.
(i) Write Bernoulli's equation.
(ii) find velocity at inlet,
(iii) caculate the gage pressure required at inlet.

