University of Swaziland

Final Examination, December 2012

BSc I, EEng I, BEd I

Title of Paper : Algebra, Trig. \& Analytic Geom.
Course Number : M111
Time Allowed : Three (3) hours
Instructions

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This Paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) Find the first 4 terms of the binomial expansion of

$$
\left(\frac{a^{3}}{b}-\frac{4 b}{a^{2}}\right)^{20}
$$

[6 marks]
(b) Find the fifth term of the biinomial expansion of

$$
\left(\frac{1}{p^{4}}-4 p^{3}\right)^{-\frac{3}{2}}
$$

[4 marks]
(c) Divide

$$
\frac{x^{5}-2 x^{4}+3 x^{2}-2 x+5}{x^{2}-3}
$$

[6 marks]
(d) Evaluate

$$
\left|\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
0 & 0 & 4 & 1 \\
-2 & 1 & 3 & -1 \\
5 & -8 & 0 & 2
\end{array}\right|
$$

[4 marks]

Question 2

(a) Solve for x.
(i) $\log _{x}\left(\frac{4}{25}\right)=\frac{2}{3}$
[2 marks]
(ii) $\log _{3}(2 x-3)=3$
[2 marks]
(iii) $\log _{7}(x+1)+\log _{7}(x-8)=\log _{5} 5$
[5 marks]
(b)
i. Using the general equation of a circle $x^{2}+y^{2}+A x+B y+C=0$, find the equation of the circle passing through $(5,-2),(3,4)$ and $(-1,-8)$.
[7 marks]
ii. Hence, find the radius and centre of the circle.
[4 marks]

Question 3

(a) Consider the parametric equations

$$
\begin{equation*}
x=1+2 \sin \theta, \quad y=2+5 \cos \theta \tag{1}
\end{equation*}
$$

i. By eliminating θ, express (1) as a single equation in terms of x and y only.
ii. Fully describe the curve defined by (1) and make a sketch, showing all the key features.
[5 marks]
(b) Expand $(1-i \sqrt{3})^{6}$ and leave your answer in the form $a+i b$, using
i. the binomial theorem
ii. de Moivre's theorem

Question 4

(a) Prove
i. $\tan \theta+\frac{\cos \theta}{1+\sin \theta}=\sec \theta$ [5 marks]
ii. $\frac{\sin \theta+\sin 2 \theta}{1+\cos \theta+\cos 2 \theta}=\tan \theta$
[5 marks]
(b) Solve

$$
\begin{aligned}
& x-2 y+z=-6 \\
& 2 x+y-z=7 \\
& x-y-2 z=7
\end{aligned}
$$

using Cramer's rule.
[10 marks]

Question 5

(a) Given that $z=2+3 i$ is a root of

$$
P(z)=6 z^{4}-23 z^{3}+72 z^{2}+21 z-26,
$$

find the 3 other roots.
[9 marks]
(b) Use synthetic division to work out

$$
\frac{2 x^{5}-2 x^{4}+2 x^{2}-3 x+7}{x+2}
$$

(c) Use mathematical induction to prove that

$$
P(n)=7^{n}-3^{n}
$$

is always divisible by 4 (where $n \geqslant 1$ is an integer).

Question 6

(a) Solve for x
i. $\quad 4^{2-3 x}=6 \cdot 5^{x}$
[3 marks]
ii. $\quad e^{x}+e^{-x}=\frac{10}{3}$
[5 marks]
(b) Find the value of the sum
i. $\quad \sum_{n=0}^{80}(5 n+7)$
ii. $\quad \sum_{n=0}^{\infty} 40\left(-\frac{3}{5}\right)^{n}$
(c) Find a solution set of

$$
\cos ^{2} \theta-\cos \theta=\sin ^{2} \theta
$$

in the interval $-\pi \leqslant \theta \leqslant \pi$.

Question 7

(a) Find the value(s) of x such that the numbers

$$
3 x^{2}+x+1,2 x^{2}+x, 4 x^{2}-6 x+1
$$

form an arithmetic progression.
(b) Use mathematical induction to prove the formula

$$
a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots+a_{1} r^{n-1}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}, \quad r \neq 1, n \geqslant 1
$$

for the sum of the first n terms of a GP.
(c) In the binomial expansion of

$$
\left(2 A^{2}+\frac{1}{\sqrt{A}}\right)^{25}
$$

i. which term is independent of A ?
ii. find this term.

