University of Swaziland

Supplementary Examination, July 2013

BSc I, EEng I, BEd I, BASS I
Title of Paper : Introduction to Calculus
Course Number : M115
Time Allowed : Three (3) hours
Instructions :

1. This paper consists of SEVEN questions printed on FIVE pages.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

Question 1

(a) Evaluate
i. $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{x^{2}-2}$
[5 marks]
ii. $\lim _{x \rightarrow \infty}\left(\frac{5 x^{2}-1}{5-x^{2}}\right)$
[5 marks]
(b) Find $\frac{\mathrm{d} f}{\mathrm{~d} x}$ using the limit definition for

$$
f(x)=3+8 \sqrt{x}
$$

[10 marks]

Question 2

(a) Consider the statement:

Points on a graph where both y^{\prime} and $y^{\prime \prime}$ vanish are called inflexion points.

Is the statement true or false? Discuss. [9 marks]
(b) Consider the function

$$
y=x^{3}-75 x+5
$$

Find the
i. stationary points and classify them [5 marks]
ii. inflexion points
[3 marks]
Hence make a sketch of the graph of the function.
[3 marks]

Question 3

(a) Differentiate
i. $y=\left(x^{2}\right)^{x^{2}}$
[4 marks]
ii. $y=\frac{x^{2}-1}{x^{2}+1}$
[4 marks]
(b) Integrate
i. $\int x \sqrt{2-x} \mathrm{~d} x$ [5 marks]
ii. $\int_{0}^{2} \frac{\mathrm{~d} x}{9+x^{2}}$
[7 marks]

Question 4

(a) Use the limit definition to prove the product rule

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\{\sin x\}=\cos x . \quad[7 \text { marks }]
$$

(b) Use Leibnitz's rule to find

$$
\frac{\mathrm{d}^{4}}{\mathrm{~d} x^{4}}\left(x^{3} \ln x\right)
$$

[7 marks]
(c) Find the exact area of the region enclosed between $y=7-x^{2}$ and $y=1-x$.
[6 marks]

Question 5

(a) Given $y=\sqrt{x^{2}+2}$, find $y^{\prime \prime}$.
[7 marks]
(b) Differentiate and simplify

$$
y=\ln \left(x^{2}-6 x+9\right)+\frac{2}{3-x} . \quad[6 \text { marks }]
$$

(c) Evaluate the integral

$$
\int \frac{\mathrm{d} x}{x^{2}+x^{3}} \mathrm{~d} x
$$

[7 marks]

Question 6

(a) Find the largest rectangle that can be constructed inside the ellipse $x^{2}+2 y^{2}=100$.
[10 marks]
(b) Evaluate
i. $\int 32 x^{2} \sin 2 x \mathrm{~d} x \quad$ [5 marks]
ii. $\int_{0}^{\frac{\pi}{2}} \sin ^{5} \theta \mathrm{~d} \theta$
[5 marks]

Question 7

(a) Evaluate
i. $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{1-\cos x}$
[4 marks]
ii. $\lim _{x \rightarrow 0} \frac{1-\sqrt{1+8 x}}{x}$
[5 marks]
(b) Find the equation of the normal to the graph of

$$
y=x \sin x-\cos x
$$

at $x=\frac{\pi}{2}$.
[3 marks]
(c) Integrate
i. $\int\left(\frac{4}{x}-6 e^{-3 x}+3 x^{2}\right) \mathrm{d} x$
[3 marks]
ii. $\int_{0}^{\frac{\pi}{4}} \sec ^{4} \theta \mathrm{~d} \theta$
[5 marks]

