University of Swaziland

Final Examination, 2012/2013

BSc II, Bass II, BEd II

Title of Paper : Calculus I
Course Number : M211
Time Allowed : Three (3) hours
Instructions :

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

University of Swaziland

Final Examination, 2012/2013

BSc II, Bass II, BEd II

Title of Paper : Calculus I
Course Number : M211
Time Allowed : Three (3) hours
Instructions :

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS been given by the invigilator.

QUESTION 1

1.1 Find the absolute maximum and absolute minimum values of the function

$$
f(x)=x e^{-x^{2} / 8}
$$

on the interval $[-1,4]$.
1.2 Let

$$
f(x)=\frac{\ln x}{\sqrt{x}}
$$

1.2.1 What is the domain of f ?
1.2.2 Find the critical points of f.
1.2.3 Determine the intervals where f is increasing and where f is decreasing.
1.2.4 Determine all local extrema of f.
1.2.5 Determine the intervals where f is concave up and where f is concave down.
1.2.6 Find all inflection points of f.

QUESTION 2

2.1 Two rail carts A and B are connected by a rope 12 m long that passes over a pulley P (see figure below).

The point Q is on the rail track 4 m directly below P and between the carts. Cart A is being pulled away from Q at a speed of $0.5 \mathrm{~m} / \mathrm{s}$. How fast is cart B moving toward Q at the instant when cart A is 3 m from Q ?
2.2 Show that the area of the largest rectangle that can be inscribed in a semicircle of radius r is r^{2}. (Hint: use the picture below).

QUESTION 3

Evaluate each of the following limits.

$$
\begin{aligned}
& 3.1 \lim _{\theta \rightarrow \pi / 2} \frac{1-\sin \theta}{1+\cos 2 \theta} \\
& 3.2 \lim _{x \rightarrow \infty}[\ln 2 x-\ln (x-1)] \\
& 3.3 \lim _{x \rightarrow \infty}(\ln x)^{1 / x} \\
& 3.4 \lim _{x \rightarrow \infty} x^{3} e^{-x}
\end{aligned}
$$

QUESTION 4

4.1 The base of a solid is the region between the curve $y=2 \sqrt{\sin x}$ and the interval $[0, \pi]$ on the x-axis. The cross sections perpendicular to the x-axis are equilateral triangles with bases running from the x-axis to the curve. Find the volume of the solid.
4.2 The region bounded by the curve $y=\sqrt{x}$ and the lines $y=2$ and $x=0$ is revolved about the line $x=4$ to generate a solid. Find the volume of the solid.

QUESTION 5

5.1 Find the length of the curve with parametric equations $x=e^{t} \cos t, y=e^{t} \sin t, 0 \leq t \leq \pi$.
5.2 Use the method of cylindrical shells to find the volume of the solid generated by revolving, about the y-axis, the region bounded the curve $y=e^{-x^{2}}$ and the lines $y=0, x=0$ and $x=1$.

QUESTION 6

6.1 Show that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
6.2 Let

$$
f(x)=(1-x)^{-2}
$$

Find the Maclaurin series for $f(x)$ and find the associated radius of convergence.

QUESTION 7

7.1 Let $a_{n}=\frac{2 n}{3 n+1}$.
7.1.1 Determine whether or not $\left\{a_{n}\right\}$ is convergent. If it is convergent, find its limit.
7.1.2 Determine whether or not $\sum_{n=1}^{\infty}$ is convergent.
7.2 Use the Integral Test to determine whether the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

converges or diverges.
7.3 Find the radius of convergence and the interval of convergence for the power series

$$
\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{n}}{\sqrt{n+1}}
$$

