University of Swaziland

Supplementary Examination, 2012/2013

BSc II, Bass II, BEd II, B.Eng II

Title of Paper : Calculus I
Course Number : M211
Time Allowed : Three (3) hours
Instructions :

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

QUESTION 1

1.1 Find the absolute maximum and absolute minimum values of the function

$$
f(x)=x \sqrt{4-x^{2}}
$$

on the interval $[-1,2]$.
1.2 Let

$$
f(x)=x^{4}-2 x^{2}
$$

1.2.1 Find the critical points of f.
1.2.2 Determine the intervals where f is increasing and where f is decreasing.
1.2.3 Determine all local extrema of f.
1.2.4 Determine the intervals where f is concave up and where f is concave down.
1.2.5 Find all inflection points of f.

QUESTION 2

Evaluate each of the following limits.

$$
\begin{align*}
& 2.1 \lim _{t \rightarrow 0} \frac{t(1-\cos t)}{t-\sin t} \tag{5}\\
& 2.2 \lim _{x \rightarrow 1^{+}}\left(\frac{1}{x-1}-\frac{1}{\ln x}\right) \\
& 2.3 \lim _{x \rightarrow(\pi / 2)^{-}}\left(x-\frac{\pi}{2}\right) \sec x \\
& 2.4 \lim _{x \rightarrow 0^{+}} x^{-1 / \ln x}
\end{align*}
$$

QUESTION 3

3.1 The top of a ladder slides down a vertical wall at a rate of $0.15 \mathrm{~m} / \mathrm{s}$. At the moment when the bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of 0.2 m / s. How long is the ladder?
3.2 The angle of elevation of the sun is decreasing at a rate of $0.25 \mathrm{rad} / \mathrm{h}$. How fast is the shadow cast by a 400 m tall building increasing when the angle of elevation of the sun is $\pi / 6$ radians?

QUESTION 4

4.1 The base of a solid is the region between the curve $y=2 \sqrt{\sin x}$ and the interval $[0, \pi]$ on the x-axis. The cross sections perpendicular to the x-axis are squares with bases running from the x-axis to the curve. Find the volume of the solid.
4.2 The region bounded by the curve $y=\sqrt{x}$ and the lines $y=2$ and $x=0$ is revolved about the line $y=2$ to generate a solid. Find the volume of the solid.

QUESTION 5

5.1 Find the length of the curve $y=\frac{1}{4} x^{2}-\frac{1}{2} \ln x, 1 \leq x \leq 2$
5.2 The region bounded by the lines $y=x, y=-x / 2$ and $x=2$ is revolved about the y-axis to generate a-solid. Use the method of cylindrical shells to calculate the volume of the solid.

QUESTION 6

6.1 Investigate the convergence of each series.
6.1.1 $\sum_{n=0}^{\infty} \frac{2^{n}+5}{3^{n}}$
6.1.2 $\sum_{n=1}^{\infty}\left(\frac{1}{1+n}\right)^{n}$
6.2 Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{x^{n}}{\sqrt{n}}$.

QUESTION 7

7.1 Determine whether the sequence whose nth term is $a_{n}=\left(\frac{n+1}{n-1}\right)^{n}$ is convergent or not. If it is convergent, find $\lim _{n \rightarrow \infty} a_{n}$.
7.2 Consider the sequence $\left\{a_{n}\right\}$ defined recursively by

$$
a_{1}=2 \quad a_{n+1}=\frac{1}{2}\left(a_{n}+6\right) \quad \text { for } n=1,2,3, \ldots
$$

7.2.1 Use mathematical induction to show that $a_{n+1}>a_{n}$ for all $n \geq 1$.
7.2.2 Use mathematical induction to show that $a_{n}<6$ for all n.
7.2.3 Use your answers to 7.2 .1 and 7.2 .2 to determine whether or not the sequence is convergent.

