UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/13

BSC./B.ED./B.A.S.S II

TITLE OF PAPER	$:$	CALCULUS II
COURSE NUMBER	$:$	M212
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$ for $f(x, y, z)=3 x^{2} y-\sin \left(2 y z^{3}\right)$
(b) Show that $f(x, y)=\cos (x-y)$ is a solution to $\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}=0$
(c) Find $\frac{\partial^{2} f}{\partial x^{2}}$ and $\frac{\partial^{2} f}{\partial y^{2}}$ for

$$
f(x, y)=x^{4}-4 x^{3} y+4 x y^{3}-y^{4}
$$

QUESTION 2

(a) For each of the following use a double integral to find the area bounded by the curves
(i) $y=x^{2}$ and $y=x^{4}$
(ii) $y=4 x+8$ and $y=x^{3}+8$
(b) A rectangular garden is to be fenced on 3 sides using 1000 metres of fencing (the 4th side being a straight river's edge). Use Langrange mulitpliers to find the dimensions that would give the largest possible area.

QUESTION 3

(a) Find the critical points of the following functions and test for relative maxima, minima and saddle points

$$
f(x, y)=4 x y-x^{4}-y^{4}
$$

[10]
(b) Show that the ellipsoid $3 x^{2}+4 y^{2}+8 z^{2}-24=0$ and the hyperboloid of two piece $4 x^{2}-4 y^{2}-z^{2}-4=0$ are orthogonal (perpendicular) to each other at the common point $p_{o}\left(4 \frac{\sqrt{5}}{5}, \sqrt{2}, 2 \frac{\sqrt{5}}{5}\right)$

QUESTION 4

a) Show that the function

$$
f(x, y)=\frac{x y}{x-y}
$$

satisfies

$$
x^{2} f_{x x}+2 x y f_{x y}+y^{2} f_{y y}=0
$$

b) Evaluate the interated integral

$$
\int_{0}^{8} \int_{+3 \sqrt{y}}^{2} e^{x^{4}} d x d y
$$

QUESTION 5

a) Express the given rectangular equations in polar
(i) $x y=4$
(ii) $x^{2}-8 x+y^{2}+7=0$
b) Consider the curve

$$
r=2+2 \sin \theta
$$

(i) Sketch the curve.
(ii) Find the area enclosed by the curve.
(iii) Find the length of the curve.

QUESTION 6

a) Find the equation of the tangent to the surface
$f(x, y)=x^{2}+3 y^{2}-4 z^{2}+3 x y-10 y z+4 x-5 z-22$
at the point $(1,-2,1)$.
b) Find the point on the plane

$$
x+2 y-3 z-4=0
$$

nearest to the origin.
a) Evaluate the integral by converting to polar coordinates

$$
\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} x^{2} y^{2} d x d y
$$

b) Evaluate

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-y^{2}-x^{2}}} x^{3} y z d z d y d x
$$

